Yong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496449/publications.pdf

Version: 2024-02-01

101 papers	4,875 citations	35 h-index	98622 67 g-index
102	102	102	3725
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015, 10, 103-122.	5.3	660
2	Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Materialia, 1998, 46, 4325-4338.	3.8	317
3	Large Exchange Bias after Zero-Field Cooling from an Unmagnetized State. Physical Review Letters, 2011, 106, 077203.	2.9	279
4	Two-way shape memory effect developed by martensite deformation in NiTi. Acta Materialia, 1998, 47, 199-209.	3.8	217
5	Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy. Scripta Materialia, 2001, 45, 153-160.	2.6	190
6	Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation. Acta Materialia, 1998, 46, 1989-2000.	3.8	148
7	Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta Materialia, 1999, 47, 645-660.	3.8	143
8	Some aspects of the properties of NiTi shape memory alloy. Journal of Alloys and Compounds, 1997, 247, 115-121.	2.8	139
9	Dependence of Transformation Temperatures of NiTiâ€based Shapeâ€Memory Alloys on the Number and Concentration of Valence Electrons. Advanced Functional Materials, 2008, 18, 2789-2794.	7.8	131
10	Lüders-like deformation associated with martensite reorientation in NiTi. Scripta Materialia, 1998, 39, 1047-1055.	2.6	111
11	The ductility and shape-memory properties of Ni–Mn–Co–Ga high-temperature shape-memory alloys. Acta Materialia, 2009, 57, 3232-3241.	3.8	98
12	Cyclic deformation of NiTi shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 673-678.	2.6	93
13	Twinning and detwinning of ã€^0â€^1â€^1〉 type II twin in shape memory alloy. Acta Materialia, 2003, 51, 552	.9 &§ 43.	88
14	A Review of Selective Laser Melted NiTi Shape Memory Alloy. Materials, 2018, 11, 519.	1.3	88
15	Some results on the detwinning process in NiTi shape memory alloys. Scripta Materialia, 1999, 41, 1273-1281.	2.6	87
16	On the deformation of the twinned domain in Niti shape memory alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1935-1953.	0.8	81
17	Hierarchically self-morphing structure through 4D printing. Virtual and Physical Prototyping, 2017, 12, 61-68.	5.3	70
18	Mechanical and thermomechanical properties of a Ti50Ni25Cu25 melt spun ribbon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 354, 286-291.	2.6	65

#	Article	IF	Citations
19	The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Materialia, 2015, 95, 411-427.	3.8	65
20	High strain rate deformation of martensitic NiTi shape memory alloy. Scripta Materialia, 1999, 41, 89-95.	2.6	63
21	Exchange bias and its training effect in the martensitic state of bulk polycrystalline Ni49.5Mn34.5ln16. Journal of Applied Physics, 2008, 104, .	1.1	62
22	Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys. Intermetallics, 2009, 17, 914-919.	1.8	57
23	Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. Smart Materials and Structures, 2017, 26, 125001.	1.8	53
24	Martensite stabilization and thermal cycling stability of two-phase NiMnGa-based high-temperature shape memory alloys. Acta Materialia, 2012, 60, 4255-4267.	3.8	52
25	The crystal chemistry of martensite in NiTiHf shape memory alloys. Intermetallics, 2008, 16, 876-883.	1.8	49
26	Review of mechanisms and deformation behaviors in 4D printing. International Journal of Advanced Manufacturing Technology, 2019, 105, 4633-4649.	1.5	48
27	Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 174-184.	1.5	47
28	Deformation of shape memory alloys associated with twinned domain re-configurations. Materials Science & Deformation A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 679-684.	2.6	46
29	<title>Detwinning process and its anisotropy in shape memory alloys</title> ., 2001, 4234, 82.		45
30	Large exchange bias obtainable through zero-field cooling from an unmagnetized state in Ni-Mn-Sn alloys. Journal of Applied Physics, 2012, 111, 043912.	1.1	45
31	Characterization of a nanocrystalline NiTiHf high temperature shape memory alloy thin film. Scripta Materialia, 2005, 52, 983-987.	2.6	43
32	Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation. Materials, 2018, 11, 376.	1.3	40
33	Shape recovery of NiTi shape memory alloy under various pre-strain and constraint conditions. Smart Materials and Structures, 2005, 14, S273-S286.	1.8	39
34	Strong thermal-history-dependent magnetoresistance behavior in Ni49.5Mn34.5In16. Journal of Applied Physics, 2009, 106, 063909.	1.1	39
35	On the mechanisms of two-way memory effect and stress-assisted two-way memory effect in NiTi shape memory alloy. Journal of Alloys and Compounds, 2008, 449, 125-128.	2.8	37
36	On the two-way shape memory behavior in NiTi alloyâ€"An experimental analysis. Acta Materialia, 2008, 56, 3266-3277.	3.8	36

#	Article	IF	CITATIONS
37	Effect of stress-induced martensitic transformation on the crack tip stress-intensity factor in Niâ∈"Mn–Ga shape memory alloy. Acta Materialia, 2007, 55, 5621-5629.	3.8	35
38	Effect of precipitation on the shape memory effect of Ti50Ni25Cu25 melt-spun ribbon. Acta Materialia, 2008, 56, 1721-1732.	3.8	34
39	Wear behaviour of martensitic NiTi shape memory alloy under ball-on-disk sliding tests. Tribology International, 2013, 66, 219-224.	3.0	34
40	Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning. Shape Memory and Superelasticity, 2018, 4, 112-120.	1.1	34
41	Rate dependence of deformation mechanisms in a shape memory alloy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 2461-2473.	0.8	33
42	Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy. Materials, 2019, 12, 77.	1.3	32
43	Microstructure and texture development in Ti50Ni25Cu25 melt-spun ribbon. Acta Materialia, 2007, 55, 361-369.	3.8	31
44	An investigation on the crystal structures of Ti50Ni50â^'xCux shape memory alloys based on density functional theory calculations. Intermetallics, 2014, 53, 20-25.	1.8	29
45	Substrate-induced stress and transformation characteristics of a deposited Ti–Ni–Cu thin film. Philosophical Magazine, 2004, 84, 1919-1936.	0.7	27
46	Thermomechanical training and the shape recovery characteristics of NiTi alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 166-169.	2.6	27
47	Crystallization behavior of a Ti50Ni25Cu25 melt-spun ribbon. Journal of Alloys and Compounds, 2008, 449, 152-155.	2.8	27
48	HRTEM study of âŸ˙011⟩ type II twin in NiTi shape memory alloy. Philosophical Magazine, 2004, 84, 3497-350	7.0.7	26
49	A second-order ferromagnetic transition in the martensitic state of Ni49.5Mn32.5Cu4Sn14: A critical behavior study. Journal of Applied Physics, 2009, 105, .	1.1	26
50	Effect of temperature on the wear behavior of NiTi shape memory alloy. Journal of Materials Research, 2015, 30, 186-196.	1.2	26
51	The mechanism clarification of Ni–Mn–Fe–Ga alloys with excellent and stable functional properties. Journal of Alloys and Compounds, 2013, 560, 84-91.	2.8	24
52	Wear Behavior of Austenitic NiTi Shape Memory Alloy. Shape Memory and Superelasticity, 2015, 1, 58-68.	1.1	24
53	Prediction of the detwinning anisotropy in textured NiTi shape memory alloy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 665-683.	0.8	23
54	Phase transformation in NiTiHf shape memory alloy thin films. Thin Solid Films, 2008, 516, 5393-5396.	0.8	23

#	Article	IF	CITATIONS
55	A jumping shape memory alloy under heat. Scientific Reports, 2016, 6, 21754.	1.6	23
56	Transformation characteristics of annealed Ti50Ni25Cu25 melt spun ribbon. Journal of Alloys and Compounds, 2006, 415, 182-187.	2.8	22
57	Fracture mechanism of a Ni–Mn–Ga ferromagnetic shape memory alloy single crystal. Journal of Magnetism and Magnetic Materials, 2005, 285, 410-416.	1.0	21
58	Thermally induced fracture of single crystal Ni–Mn–Ga ferromagnetic shape memory alloy. Journal of Alloys and Compounds, 2006, 415, 188-192.	2.8	21
59	Dynamic deformation of shape-memory alloys: Evidence of domino detwinning?. Philosophical Magazine Letters, 2002, 82, 511-517.	0.5	20
60	Properties of rapidly annealed Ti50Ni25Cu25 melt-spun ribbon. Journal of Alloys and Compounds, 2006, 416, 188-193.	2.8	20
61	A dynamic indentation method for characterizing soft incompressible viscoelastic materials. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 379, 334-340.	2.6	19
62	Factors affecting the generation of stress-assisted two-way memory effect in NiTi shape memory alloy. Journal of Alloys and Compounds, 2005, 400, 163-170.	2.8	19
63	Stabilization of retained austenite due to partial martensitic transformations. Acta Metallurgica Et Materialia, 1994, 42, 4117-4133.	1.9	18
64	The work production of shape memory alloy. Smart Materials and Structures, 2004, 13, 552-561.	1.8	18
65	Internal friction associated with dislocation relaxations in virgin martensite—I. Experiments. Acta Metallurgica Et Materialia, 1993, 41, 3277-3287.	1.9	17
66	Characterization of a rapidly annealed Ti50Ni25Cu25 melt-spun ribbon. Journal of Alloys and Compounds, 2008, 456, 170-177.	2.8	17
67	Effect of precipitation on two-way shape memory effect of melt-spun Ti50Ni25Cu25 ribbon. Materials Chemistry and Physics, 2010, 120, 221-224.	2.0	17
68	Enhanced magnetoresistance through magnetic-field-induced phase transition in Ni2MnGa co-doped with Co and Mn. Journal of Magnetism and Magnetic Materials, 2010, 322, 715-717.	1.0	16
69	Internal friction associated with dislocation relaxations in virgin martensite—II. Interpretation. Acta Metallurgica Et Materialia, 1994, 42, 621-630.	1.9	15
70	Exchange Bias and Inverse Magnetocaloric Effect in Co and Mn Co-Doped Ni2MnGa Shape Memory Alloy. Metals, 2013, 3, 69-76.	1.0	15
71	Some aspects of strain-induced change of magnetization in a Ni–Mn–Ga single crystal. Scripta Materialia, 2005, 53, 829-834.	2.6	14
72	Enhanced wear resistance of NiTi alloy by surface modification with Nb ion implantation. Rare Metals, 2014, 33, 244-248.	3.6	14

#	Article	IF	Citations
73	Surface morphology of sputtered NiTi-based shape memory alloy thin films. Surface and Coatings Technology, 2005, 190, 400-405.	2.2	13
74	Texture and shape memory property of annealed Ti50Ni25Cu25 ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 425, 268-271.	2.6	11
75	Electrical transport and thermal properties of ferromagnetic shape memory alloy Ni49.4Mn30Ga20.6. Journal of Magnetism and Magnetic Materials, 2006, 303, 261-265.	1.0	10
76	Evolution of local atomic structure in a melt-spun Ni ₂₅ Ti ₅₀ Cu ₂₅ shape memory alloy during crystallization. Philosophical Magazine, 2011, 91, 404-420.	0.7	10
77	Shape Memory Alloy as Actuator to Deflect a Wing Flap. , 2008, , .		9
78	Effect of surface oxidation on detwinning stress and transformation temperature of Ti–50Ni shape memory alloy. Journal of Alloys and Compounds, 2008, 448, 171-176.	2.8	9
79	TEM in situ study of the pre-strained NiTi shape memory alloyâ€"driving force for shape recovery?. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 361, 185-190.	2.6	8
80	Thermomechanical stability of Ni–Mn–Ga single crystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 432, 178-183.	2.6	8
81	The Rational Nature of Type II Twin in NiTi Shape Memory Alloy. Journal of Intelligent Material Systems and Structures, 2006, 17, 1083-1090.	1.4	8
82	Rate dependence of deformation mechanisms in a shape memory alloy. , 0, .		8
83	Some factors affecting the properties of sputter deposited NiTi-based shape memory alloy thin films. , 2002, 4934, 210.		7
84	On the Detwinning Mechanism in Shape Memory Alloys. Solid Mechanics and Its Applications, 2002, , 37-44.	0.1	7
85	Influence of martensitic morphology on the behaviour of virgin martensite at low temperatures. Scripta Metallurgica Et Materialia, 1991, 25, 1345-1350.	1.0	6
86	Effects of martensite morphology on the aging behaviour of virgin martensite. Acta Metallurgica Et Materialia, 1993, 41, 1587-1593.	1.9	6
87	Effect of Cu Content on Atomic Positions of Ti50Ni50â€'xCux Shape Memory Alloys Based on Density Functional Theory Calculations. Metals, 2015, 5, 2222-2235.	1.0	6
88	Zig-zag martensite formed at low temperatures. Scripta Metallurgica Et Materialia, 1992, 27, 887-892.	1.0	5
89	Substrate-induced stress and the transformation behavior of sputter-deposited NiTi thin films. Materials Science & Deposited NiTi thin films. Processing, 2003, 352, 314-317.	2.6	4
90	Stress-induced change of magnetization in a Ni–Mn–Ga single crystal under magnetomechanical training. Applied Physics Letters, 2006, 88, 232504.	1.5	4

#	Article	IF	Citations
91	Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys. Shape Memory and Superelasticity, 2016, 2, 204-217.	1.1	4
92	Internal friction of Fe-N martensite at low temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 231, 183-188.	2.6	3
93	Effect of SiO2 buffer layer on properties of sputter-deposited NiTi shape memory alloy thin films. Surface and Coatings Technology, 2003, 167, 148-153.	2.2	2
94	Some factors affecting the shape recovery properties of NiTi SMA. , 2006, , .		2
95	Effect of Grain Boundary on the Wear Behaviour of NiTi Shape Memory Alloys When MfÂ<ÂTÂ<ÂAf. Tribology Letters, 2018, 66, 1.	1.2	2
96	<title>Anisotropy of detwinning process in textured NiTi shape memory alloy</title> ., 2000, , .		1
97	Strengthening of virgin martensite through cryogenic deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3576-3578.	1.1	1
98	Twinning and Detwinning of & https://www.gt; Type II Twins in NiTi Shape Memory Alloy. Materials Science Forum, 2003, 426-432, 2291-2296.	0.3	1
99	Shape Memory and Related Technologies. Smart Materials and Structures, 2005, 14, .	1.8	1
100	Properties of Ti50Ni25Cu25 Melt-Spun Ribbon. , 2006, , .		1
101	Two-Way Memory Effect in NiTi Shape Memory Alloys. Advances in Science and Technology, 0, , .	0.2	1