Tamilselvan Mohan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496105/publications.pdf

Version: 2024-02-01

236612 329751 1,618 67 25 37 citations h-index g-index papers 67 67 67 1837 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydrate Polymers, 2022, 280, 118875.	5.1	17
2	Solid Phase Peptide Synthesis on Chitosan Thin Films. Biomacromolecules, 2022, 23, 731-742.	2.6	6
3	One-Step Fabrication of Hollow Spherical Cellulose Beads: Application in pH-Responsive Therapeutic Delivery. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3726-3739.	4.0	11
4	Humidity Response of Cellulose Thin Films. Biomacromolecules, 2022, 23, 1148-1157.	2.6	9
5	Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility. IScience, 2022, 25, 104263.	1.9	12
6	Cellulose surface modification for improved attachment of carbon nanotubes. Cellulose, 2022, 29, 6057-6076.	2.4	7
7	Consolidation of cellulose nanofibrils with lignosulphonate bio-waste into excellent flame retardant and UV blocking membranes. Carbohydrate Polymers, 2021, 251, 117126.	5.1	15
8	Protein repellent anti-coagulative mixed-charged cellulose derivative coatings. Carbohydrate Polymers, 2021, 254, 117437.	5.1	8
9	Anticoagulant Activity of Cellulose Nanocrystals from Isora Plant Fibers Assembled on Cellulose and SiO2 Substrates via a Layer-by-Layer Approach. Polymers, 2021, 13, 939.	2.0	6
10	Bioactive Functional Nanolayers of Chitosan–Lysine Surfactant with Single- and Mixed-Protein-Repellent and Antibiofilm Properties for Medical Implants. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23352-23368.	4.0	16
11	Cellulose-based biogenic supports, remarkably friendly biomaterials for proteins and biomolecules. Biosensors and Bioelectronics, 2021, 182, 113170.	5.3	22
12	Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomaterials Science and Engineering, 2021, 7, 3618-3632.	2.6	12
13	Water-based carbodiimide mediated synthesis of polysaccharide-amino acid conjugates: Deprotection, charge and structural analysis. Carbohydrate Polymers, 2021, 267, 118226.	5.1	9
14	High oxygen barrier chitosan films neutralized by alkaline nanoparticles. Cellulose, 2021, 28, 10457-10475.	2.4	10
15	Rapid Functionalization of Polytetrafluorethylene (PTFE) Surfaces with Nitrogen Functional Groups. Polymers, 2021, 13, 4301.	2.0	2
16	Non-Equilibrium Plasma Methods for Tailoring Surface Properties of Polyvinylidene Fluoride: Review and Challenges. Polymers, 2021, 13, 4243.	2.0	3
17	Comparison of Trimethylsilyl Cellulose-Stabilized Carbonate and Hydroxide Nanoparticles for Deacidification and Strengthening of Cellulose-Based Cultural Heritage. ACS Omega, 2020, 5, 29243-29256.	1.6	13
18	Generic Method for Designing Self-Standing and Dual Porous 3D Bioscaffolds from Cellulosic Nanomaterials for Tissue Engineering Applications. ACS Applied Bio Materials, 2020, 3, 1197-1209.	2.3	42

#	Article	IF	Citations
19	Design of stable and new polysaccharide nanoparticles composite and their interaction with solid cellulose surfaces. Nano Structures Nano Objects, 2020, 24, 100564.	1.9	10
20	Affinity of Serum Albumin and Fibrinogen to Cellulose, Its Hydrophobic Derivatives and Blends. Frontiers in Chemistry, 2019, 7, 581.	1.8	7
21	A green approach to obtain stable and hydrophilic cellulose-based electrospun nanofibrous substrates for sustained release of therapeutic molecules. RSC Advances, 2019, 9, 21288-21301.	1.7	18
22	Highly Protein Repellent and Antiadhesive Polysaccharide Biomaterial Coating for Urinary Catheter Applications. ACS Biomaterials Science and Engineering, 2019, 5, 5825-5832.	2.6	29
23	Development of multifunctional 3D printed bioscaffolds from polysaccharides and NiCu nanoparticles and their application. Applied Surface Science, 2019, 488, 836-852.	3.1	35
24	Nano- and Micropatterned Polycaprolactone Cellulose Composite Surfaces with Tunable Protein Adsorption, Fibrin Clot Formation, and Endothelial Cellular Response. Biomacromolecules, 2019, 20, 2327-2337.	2.6	21
25	A 300 î¼m Organotypic Bone Slice Culture Model for Temporal Investigation of Endochondral Osteogenesis. Tissue Engineering - Part C: Methods, 2019, 25, 197-212.	1.1	13
26	Polysaccharide Thin Solid Films for Analgesic Drug Delivery and Growth of Human Skin Cells. Frontiers in Chemistry, 2019, 7, 217.	1.8	28
27	Novel Chitosan–Mg(OH) ₂ -Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 19356-19368.	3.2	26
28	Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance. Cellulose, 2018, 25, 537-547.	2.4	11
29	Strengthening of paper by treatment with a suspension of alkaline nanoparticles stabilized by trimethylsilyl cellulose. Nano Structures Nano Objects, 2018, 16, 363-370.	1.9	19
30	3D bioprinting of polysaccharides and their derivatives: From characterization to application. , 2018, , $105-141$.		17
31	Surface modification of Magnesium and its alloy as orthopedic biomaterials with biopolymers. , 2018, , 197-210.		8
32	Chitosan–Cellulose Multifunctional Hydrogel Beads: Design, Characterization and Evaluation of Cytocompatibility with Breast Adenocarcinoma and Osteoblast Cells. Bioengineering, 2018, 5, 3.	1.6	30
33	Interaction of Tissue Engineering Substrates with Serum Proteins and Its Influence on Human Primary Endothelial Cells. Biomacromolecules, 2017, 18, 413-421.	2.6	28
34	Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. Journal of Materials Chemistry B, 2017, 5, 3888-3897.	2.9	32
35	Multilayered Polysaccharide Nanofilms for Controlled Delivery of Pentoxifylline and Possible Treatment of Chronic Venous Ulceration. Biomacromolecules, 2017, 18, 2732-2746.	2.6	22
36	Oneâ€Step Noncovalent Surface Functionalization of PDMS with Chitosanâ€Based Bioparticles and Their Proteinâ€Repellent Properties. Advanced Materials Interfaces, 2017, 4, 1700416.	1.9	19

#	Article	IF	CITATIONS
37	Back Cover: Macromol. Mater. Eng. 1/2016. Macromolecular Materials and Engineering, 2016, 301, 110-110.	1.7	O
38	The Cellulose Source Matters-Hollow Semi Spheres or Fibers by Needleless Electrospinning. Macromolecular Materials and Engineering, 2016, 301, 42-47.	1.7	11
39	Exploring Nonspecific Protein Adsorption on Lignocellulosic Amphiphilic Bicomponent Films. Biomacromolecules, 2016, 17, 1083-1092.	2.6	30
40	Cellulose thin films from ionic liquid solutions. Nordic Pulp and Paper Research Journal, 2015, 30, 6-13.	0.3	15
41	Designing Hydrophobically Modified Polysaccharide Derivatives for Highly Efficient Enzyme Immobilization. Biomacromolecules, 2015, 16, 2403-2411.	2.6	39
42	Surface-Sensitive Approach to Interpreting Supramolecular Rearrangements in Cellulose by Synchrotron Grazing Incidence Small-Angle X-ray Scattering. ACS Macro Letters, 2015, 4, 713-716.	2.3	38
43	Selective immobilization and detection of DNA on biopolymer supports for the design of microarrays. Biosensors and Bioelectronics, 2015, 68, 437-441.	5.3	18
44	Functional wound dressing materials with highly tunable drug release properties. RSC Advances, 2015, 5, 77873-77884.	1.7	101
45	Polysaccharide stabilized nanoparticles for deacidification and strengthening of paper. RSC Advances, 2015, 5, 32950-32961.	1.7	28
46	Antifouling coating of cellulose acetate thin films with polysaccharide multilayers. Carbohydrate Polymers, 2015, 116, 149-158.	5.1	61
47	Cationic Polysaccharides in Regenerative Medicine: Challenges and Perspectives. RSC Polymer Chemistry Series, 2014, , 178-196.	0.1	0
48	Triggering Protein Adsorption on Tailored Cationic Cellulose Surfaces. Biomacromolecules, 2014, 15, 3931-3941.	2.6	50
49	Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Advances, 2014, 4, 11955-11961.	1.7	45
50	Interaction and enrichment of protein on cationic polysaccharide surfaces. Colloids and Surfaces B: Biointerfaces, 2014, 123, 533-541.	2.5	15
51	Design of anticoagulant surfaces based on cellulose nanocrystals. Chemical Communications, 2014, 50, 13070-13072.	2.2	39
52	A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose, 2014, 21, 2315-2325.	2.4	24
53	Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Carbohydrate Polymers, 2013, 93, 191-198.	5.1	37
54	Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Open Chemistry, 2013, 11 , $1786-1798$.	1.0	11

#	Article	IF	Citations
55	Cationically rendered biopolymer surfaces for high protein affinity support matrices. Chemical Communications, 2013, 49, 11530.	2.2	28
56	Interactions of a cationic cellulose derivative with an ultrathin cellulose support. Carbohydrate Polymers, 2013, 92, 1046-1053.	5.1	27
57	Generalized Indirect Fourier Transformation as a Valuable Tool for the Structural Characterization of Aqueous Nanocrystalline Cellulose Suspensions by Small Angle X-ray Scattering. Langmuir, 2013, 29, 3740-3748.	1.6	21
58	Functional Patterning of Biopolymer Thin Films Using Enzymes and Lithographic Methods. Advanced Functional Materials, 2013, 23, 308-315.	7.8	53
59	Cellulose and Other Polysaccharides Surface Properties and Their Characterisation., 2012,, 215-251.		5
60	Functional Polysaccharide Conjugates for the Preparation of Microarrays. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2743-2751.	4.0	26
61	Adsorption of Carboxymethyl Cellulose on Polymer Surfaces: Evidence of a Specific Interaction with Cellulose. Langmuir, 2012, 28, 11440-11447.	1.6	86
62	Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter, 2012, 8, 9807.	1.2	76
63	Watching cellulose grow – Kinetic investigations on cellulose thin film formation at the gas–solid interface using a quartz crystal microbalance with dissipation (QCM-D). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 400, 67-72.	2.3	39
64	Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. Journal of Colloid and Interface Science, 2011, 358, 604-610.	5.0	98
65	Nanocellulosic Materials in Tissue Engineering Applications. , 0, , .		4
66	Design, Characterisation and Applications of Cellulose-Based Thin Films, Nanofibers and 3D Printed Structures: A Laboratory Manual. , 0, , .		0
67	Organic Acid Crosslinked 3D Printed Cellulose Nanocomposite Bioscaffolds With Controlled Porosity, Mechanical Strength and Biocompatibility. SSRN Electronic Journal, 0, , .	0.4	0