Sadra Sadeghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496103/publications.pdf

Version: 2024-02-01

516710 526287 30 750 16 27 citations g-index h-index papers 33 33 33 734 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stokes-Shift-Engineered Indium Phosphide Quantum Dots for Efficient Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2018, 10, 12975-12982.	8.0	93
2	Quantum dot white LEDs with high luminous efficiency. Optica, 2018, 5, 793.	9.3	84
3	Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots. ACS Nano, 2018, 12, 8104-8114.	14.6	52
4	Past, present and future of indium phosphide quantum dots. Nano Research, 2022, 15, 4468-4489.	10.4	50
5	Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8710-8716.	8.0	45
6	Efficient White LEDs Using Liquid-state Magic-sized CdSe Quantum Dots. Scientific Reports, 2019, 9, 10061.	3.3	41
7	Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs. ACS Applied Materials & Dots and Their Application for LEDs. ACS	8.0	41
8	Silk-hydrogel Lenses for Light-emitting Diodes. Scientific Reports, 2017, 7, 7258.	3.3	37
9	Light-Emitting Devices Based on Type-II InP/ZnO Quantum Dots. ACS Photonics, 2019, 6, 939-946.	6.6	35
10	High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. IScience, 2020, 23, 101272.	4.1	32
11	Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. Nanotechnology, 2018, 29, 345605.	2.6	30
12	Excitonic Energy Transfer within InP/ZnS Quantum Dot Langmuir–Blodgett Assemblies. Journal of Physical Chemistry C, 2018, 122, 11616-11622.	3.1	27
13	Biocompatible Quantum Funnels for Neural Photostimulation. Nano Letters, 2019, 19, 5975-5981.	9.1	22
14	Exciton recycling via InP quantum dot funnels for luminescent solar concentrators. Nano Research, 2021, 14, 1488-1494.	10.4	20
15	Unravelling radiative energy transfer in solid-state lighting. Journal of Applied Physics, 2018, 123, .	2.5	18
16	Plasmon-Coupled Photocapacitor Neuromodulators. ACS Applied Materials & 2020, 11, 35940-35949.	8.0	18
17	High-Performance White Light-Emitting Diodes over 150 lm/W Using Near-Unity-Emitting Quantum Dots in a Liquid Matrix. ACS Photonics, 2022, 9, 1304-1314.	6.6	18
18	Colloidal Aluminum Antimonide Quantum Dots. Chemistry of Materials, 2019, 31, 4743-4747.	6.7	14

#	Article	IF	CITATIONS
19	High quality quantum dots polymeric films as color converters for smart phone display technology. Materials Research Express, 2019, 6, 035015.	1.6	13
20	Silk-Based Aqueous Microcontact Printing. ACS Biomaterials Science and Engineering, 2018, 4, 1463-1470.	5.2	10
21	Ultraâ€Efficient and Highâ€Quality White Lightâ€Emitting Devices using Fluorescent Proteins in Aqueous Medium. Advanced Materials Technologies, 2020, 5, 2000061.	5 . 8	10
22	Protocol on synthesis and characterization of copper-doped InP/ZnSe quantum dots as ecofriendly luminescent solar concentrators with high performance and large area. STAR Protocols, 2021, 2, 100664.	1.2	8
23	Perovskiteâ€Based Optoelectronic Biointerfaces for Nonâ€Biasâ€Assisted Photostimulation of Cells. Advanced Materials Interfaces, 2019, 6, 1900758.	3.7	7
24	Ultraefficient Green LEDs Using Quantum Dots in Liquid Matrix. IEEE Transactions on Electron Devices, 2019, 66, 4784-4789.	3.0	7
25	Bulk-heterojunction photocapacitors with high open-circuit voltage for low light intensity photostimulation of neurons. Journal of Materials Chemistry C, 2021, 9, 1755-1763.	5 . 5	7
26	Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium. Chemical Physics Reviews, 2021, 2, .	5.7	6
27	White LEDs: Ultraâ€Efficient and Highâ€Quality White Lightâ€Emitting Devices using Fluorescent Proteins in Aqueous Medium (Adv. Mater. Technol. 6/2020). Advanced Materials Technologies, 2020, 5, 2070035.	5 . 8	2
28	Cation exchange mediated synthesis of bright Au@ZnTe core–shell nanocrystals. Nanotechnology, 2021, 32, 025603.	2.6	2
29	Silk as a biodegradable resist for field-emission scanning probe lithography. Nanotechnology, 2020, 31, 435303.	2.6	1
30	Eco-friendly Silk-hydrogel Lenses for LEDs. , 2018, , .		0