Jürg Luterbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496068/publications.pdf

Version: 2024-02-01

205 papers 20,368 citations

70 h-index 136 g-index

211 all docs

211 docs citations

times ranked

211

15307 citing authors

#	Article	IF	CITATIONS
1	European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500. Science, 2004, 303, 1499-1503.	12.6	1,507
2	The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science, 2011, 332, 220-224.	12.6	1,193
3	2500 Years of European Climate Variability and Human Susceptibility. Science, 2011, 331, 578-582.	12.6	1,154
4	Continental-scale temperature variability during the past two millennia. Nature Geoscience, 2013, 6, 339-346.	12.9	954
5	Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 2016, 9, 231-236.	12.9	596
6	North Atlantic Oscillation – Concepts And Studies. Surveys in Geophysics, 2001, 22, 321-381.	4.6	568
7	A Review of the European Summer Heat Wave of 2003. Critical Reviews in Environmental Science and Technology, 2010, 40, 267-306.	12.8	564
8	Historical Climatology In Europe – The State Of The Art. Climatic Change, 2005, 70, 363-430.	3.6	549
9	Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate Dynamics, 2004, 23, 63-78.	3.8	521
10	Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2876-2908.	2.7	441
11	Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Climate Dynamics, 2006, 26, 387-405.	3.8	389
12	Indices for daily temperature and precipitation extremes in Europe analyzed for the period $1901\hat{a}$ \(\epsilon^2 2000\). Journal of Geophysical Research, 2006, 111 , .	3.3	347
13	Longâ€term drought severity variations in Morocco. Geophysical Research Letters, 2007, 34, .	4.0	313
14	Temperature and precipitation variability in the European Alps since 1500. International Journal of Climatology, 2005, 25, 1855-1880.	3.5	304
15	Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Climate Dynamics, 2003, 20, 723-739.	3.8	302
16	Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Climate Dynamics, 2007, 29, 251-275.	3.8	273
17	Reconstruction of monthly NAO and EU indices back to AD 1675. Geophysical Research Letters, 1999, 26, 2745-2748.	4.0	250
18	Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiology, 2010, 30, 225-233.	3.1	233

#	Article	IF	Citations
19	Orbital forcing of tree-ring data. Nature Climate Change, 2012, 2, 862-866.	18.8	232
20	European climate of the past 500Âyears: new challenges for historical climatology. Climatic Change, 2010, 101, 7-40.	3.6	196
21	Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime. Climate Research, 2000, 14, 129-146.	1.1	193
22	Support for global climate reorganization during the "Medieval Climate Anomaly― Climate Dynamics, 2011, 37, 1217-1245.	3.8	192
23	Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200Âyears. Nature Geoscience, 2017, 10, 512-517.	12.9	191
24	Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Climatic Change, 2010, 101, 69-107.	3. 6	189
25	Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature, 2004, 431, 971-974.	27.8	187
26	Title is missing!. Climatic Change, 2001, 49, 441-462.	3.6	186
27	The past ecology of <i>Abies alba</i> provides new perspectives on future responses of silver fir forests to global warming. Ecological Monographs, 2013, 83, 419-439.	5.4	176
28	Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophysical Research Letters, 2007, 34, .	4.0	173
29	Palaeolimnological evidence for an east–west climate see-saw in the Mediterranean since AD 900. Global and Planetary Change, 2012, 84-85, 23-34.	3.5	167
30	Daily Mean Sea Level Pressure Reconstructions for the European–North Atlantic Region for the Period 1850–2003. Journal of Climate, 2006, 19, 2717-2742.	3.2	165
31	Can we trust proxy-based NAO index reconstructions?. Geophysical Research Letters, 2000, 27, 1135-1138.	4.0	163
32	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Climate Dynamics, 2005, 25, 75-98.	3.8	163
33	The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 <i>past1000</i> simulations. Geoscientific Model Development, 2017, 10, 4005-4033.	3.6	155
34	The International Atmospheric Circulation Reconstructions over the Earth (ACRE) Initiative. Bulletin of the American Meteorological Society, 2011, 92, 1421-1425.	3.3	146
35	Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Natural Hazards and Earth System Sciences, 2010, 10, 1037-1050.	3. 6	143
36	Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Climate Dynamics, 2011, 37, 35-51.	3.8	135

#	Article	IF	CITATIONS
37	The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrological Sciences Journal, 2011, 56, 733-758.	2.6	134
38	Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Climate of the Past, 2013, 9, 393-421.	3.4	131
39	Atmospheric circulation variability in the North-Atlantic-European area since the mid-seventeenth century. Climate Dynamics, 2003, 20, 341-352.	3.8	127
40	A European pattern climatology 1766–2000. Climate Dynamics, 2007, 29, 791-805.	3.8	127
41	The Exceptional 2018 European Water Seesaw Calls for Action on Adaptation. Earth's Future, 2019, 7, 652-663.	6.3	126
42	Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950–1999. Climate Dynamics, 2003, 20, 537-554.	3.8	124
43	Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophysical Research Letters, 2007, 34, .	4.0	123
44	Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophysical Research Letters, 2013, 40, 4887-4892.	4.0	120
45	Influence of human and natural forcing on European seasonal temperatures. Nature Geoscience, 2011, 4, 99-103.	12.9	118
46	The year without a summer. Nature Geoscience, 2015, 8, 246-248.	12.9	116
46	The year without a summer. Nature Geoscience, 2015, 8, 246-248. Title is missing!. Climatic Change, 2001, 48, 581-615.	12.9	116
47	Title is missing!. Climatic Change, 2001, 48, 581-615. Realising consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quaternary Science	3.6	114
47	Title is missing!. Climatic Change, 2001, 48, 581-615. Realising consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quaternary Science Reviews, 2016, 136, 5-22. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and	3.6	114
48	Title is missing!. Climatic Change, 2001, 48, 581-615. Realising consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quaternary Science Reviews, 2016, 136, 5-22. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophysical Research Letters, 2010, 37, . Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions.	3.6 3.0 4.0	114 113 112
47 48 49 50	Title is missing!. Climatic Change, 2001, 48, 581-615. Realising consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quaternary Science Reviews, 2016, 136, 5-22. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophysical Research Letters, 2010, 37, . Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change, 2017, 7, 137-141.	3.6 3.0 4.0 18.8	114 113 112 108
47 48 49 50	Title is missing!. Climatic Change, 2001, 48, 581-615. Realising consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quaternary Science Reviews, 2016, 136, 5-22. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophysical Research Letters, 2010, 37, . Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change, 2017, 7, 137-141. 500-year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Climatic Change, 2010, 101, 169-199. Chapter 1 Mediterranean climate variability over the last centuries: A review. Developments in Earth	3.6 3.0 4.0 18.8	114 113 112 108

#	Article	IF	CITATIONS
55	European floods during the winter 1783/1784: scenarios of an extreme event during the â€~Little Ice Age'. Theoretical and Applied Climatology, 2010, 100, 163-189.	2.8	102
56	The International Surface Pressure Databank version 2. Geoscience Data Journal, 2015, 2, 31-46.	4.4	102
57	Winter air temperature variations in western Europe during the Early and High Middle Ages (AD) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 1:7	/Overlock 1
58	The year-long unprecedented European heat and drought of 1540 – a worst case. Climatic Change, 2014, 125, 349-363.	3.6	99
59	Climate: past ranges and future changes. Quaternary Science Reviews, 2005, 24, 2164-2166.	3.0	95
60	Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 2017, 13, 1851-1900.	3.4	93
61	European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bulletin of Volcanology, 2013, 75, 1.	3.0	92
62	Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorologische Zeitschrift, 2004, 13, 271-289.	1.0	91
63	Ranking of tree-ring based temperature reconstructions of the past millennium. Quaternary Science Reviews, 2016, 145, 134-151.	3.0	91
64	The origin of the European & amp; quot; Medieval Warm Period & amp; quot;. Climate of the Past, 2006, 2, 99-113.	3.4	89
65	A Review of 2000 Years of Paleoclimatic Evidence in the Mediterranean. , 2012, , 87-185.		86
66	Background conditions influence the decadal climate response to strong volcanic eruptions. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4090-4106.	3.3	86
67	The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Climate Dynamics, 2010, 34, 1115-1128.	3.8	85
68	Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia, 2018, 50, 81-90.	2.2	83
69	Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	81
70	Iberia in 1816, the year without a summer. International Journal of Climatology, 2009, 29, 99-115.	3.5	80
71	Detrended Partial-Cross-Correlation Analysis: A New Method for Analyzing Correlations in Complex System. Scientific Reports, 2015, 5, 8143.	3.3	80
72	The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change. Quaternary Science Reviews, 2016, 136, 229-252.	3.0	79

#	Article	IF	Citations
73	Climate of the Mediterranean. , 2012, , 301-346.		78
74	Documentary data and the study of past droughts: a global state of the art. Climate of the Past, 2018, 14, 1915-1960.	3.4	75
75	Climate Variability-Observations, Reconstructions, and Model Simulations for the Atlantic-European and Alpine Region from 1500-2100 AD. Climatic Change, 2006, 79, 9-29.	3.6	74
76	Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years. Quaternary Science Reviews, 2016, 136, 209-228.	3.0	72
77	Chapter 3 Relations between variability in the Mediterranean region and mid-latitude variability. Developments in Earth and Environmental Sciences, 2006, , 179-226.	0.1	71
78	Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach. Hydrological Sciences Journal, 2006, 51, 966-985.	2.6	70
79	Is there memory in precipitation?. Nature Climate Change, 2013, 3, 174-175.	18.8	70
80	Sensitivity of European glaciers to precipitation and temperature – two case studies. Climatic Change, 2008, 90, 413-441.	3.6	68
81	Unlocking Pre-1850 Instrumental Meteorological Records: A Global Inventory. Bulletin of the American Meteorological Society, 2019, 100, ES389-ES413.	3.3	68
82	Volcanic Influence on European Summer Precipitation through Monsoons: Possible Cause for "Years without Summerâ€*. Journal of Climate, 2014, 27, 3683-3691.	3.2	66
83	The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe. Climate of the Past, 2016, 12, 2107-2126.	3.4	66
84	Swiss spring plant phenology 2007: Extremes, a multiâ€eentury perspective, and changes in temperature sensitivity. Geophysical Research Letters, 2008, 35, .	4.0	64
85	Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868. Meteorologische Zeitschrift, 2012, 21, 531-550.	1.0	61
86	Homogenization of daily maximum temperature series in the Mediterranean. Journal of Geophysical Research, 2009, 114, .	3.3	58
87	Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nature Communications, 2017, 8, 14008.	12.8	58
88	Comparison of climate field reconstruction techniques: application to Europe. Climate Dynamics, 2009, 32, 381-395.	3.8	53
89	Biomass responses in a temperate European grassland through 17Âyears of elevated <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 3875-3885.	9.5	53
90	European warm-season temperature and hydroclimate since 850 CE. Environmental Research Letters, 2019, 14, 084015.	5.2	52

#	Article	IF	Citations
91	Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quaternary Science Reviews, 2020, 230, 106074.	3.0	50
92	Introduction: Mediterranean Climateâ€"Background Information. , 2012, , xxxv-xc.		49
93	Modelling Climate and Societal Resilience in the Eastern Mediterranean in the Last Millennium. Human Ecology, 2018, 46, 363-379.	1.4	49
94	Delayed winter warming: A robust decadal response to strong tropical volcanic eruptions?. Geophysical Research Letters, 2013, 40, 204-209.	4.0	48
95	A roadmap to climate data rescue services. Geoscience Data Journal, 2018, 5, 28-39.	4.4	47
96	Multidecadal changes in winter circulation-climate relationship in Europe: frequency variations, within-type modifications, and long-term trends. Climate Dynamics, 2011, 36, 957-972.	3.8	46
97	Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. Journal of Geophysical Research, 2008, 113, .	3.3	44
98	Testing the hypothesis of post-volcanic missing rings in temperature sensitive dendrochronological data. Dendrochronologia, 2013, 31, 216-222.	2.2	44
99	European temperature records of the past five centuries based on documentary/instrumental information compared to climate simulations. Climatic Change, 2010, 101, 143-168.	3.6	43
100	A Novel Approach for the Detection of Inhomogeneities Affecting Climate Time Series. Journal of Applied Meteorology and Climatology, 2012, 51, 317-326.	1.5	42
101	Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events. Scientific Reports, 2016, 6, 29623.	3.3	42
102	A Pseudoproxy Evaluation of Bayesian Hierarchical Modeling and Canonical Correlation Analysis for Climate Field Reconstructions over Europe*. Journal of Climate, 2013, 26, 851-867.	3.2	41
103	On the Long-Term Climate Memory in the Surface Air Temperature Records over Antarctica: A Nonnegligible Factor for Trend Evaluation. Journal of Climate, 2015, 28, 5922-5934.	3.2	41
104	Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene. Earth-Science Reviews, 2020, 209, 103286.	9.1	41
105	Inner Alpine conifer response to 20th century drought swings. European Journal of Forest Research, 2010, 129, 289-298.	2.5	40
106	The meteorological framework and the cultural memory of three severe winter-storms in early eighteenth-century Europe. Climatic Change, 2010, 101, 281-310.	3.6	39
107	Did European temperatures in 1540 exceed present-day records?. Environmental Research Letters, 2016, 11, 114021.	5.2	39
108	East Asian warm season temperature variations over the past two millennia. Scientific Reports, 2018, 8, 7702.	3.3	39

#	Article	IF	CITATIONS
109	The history of scientific research on the North Atlantic Oscillation. Geophysical Monograph Series, 2003, , 37-50.	0.1	38
110	Winter amplification of the European Little Ice Age cooling by the subpolar gyre. Scientific Reports, 2017, 7, 9981.	3.3	38
111	Human activity and anomalously warm seasons in Europe. International Journal of Climatology, 2012, 32, 225-239.	3.5	36
112	Tree-Ring Amplification of the Early Nineteenth-Century Summer Cooling in Central Europea. Journal of Climate, 2015, 28, 5272-5288.	3.2	33
113	Variability of the lowâ€level crossâ€equatorial jet of the western Indian Ocean since 1660 as derived from coral proxies. Geophysical Research Letters, 2008, 35, .	4.0	32
114	Climate Model Biases and Modification of the Climate Change Signal by Intensity-Dependent Bias Correction. Journal of Climate, 2018, 31, 6591-6610.	3.2	32
115	Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Climate Dynamics, 2020, 54, 1367-1382.	3.8	32
116	Improved estimation of average warming trend of China from 1951–2010 based on satellite observed land-use data. Climatic Change, 2013, 121, 365-379.	3.6	29
117	The Etesians: from observations to reanalysis. Climate Dynamics, 2016, 47, 1569-1585.	3.8	29
118	Mediterranean Holocene climate, environment and human societies. Quaternary Science Reviews, 2016, 136, 1-4.	3.0	29
119	On climate prediction: how much can we expect from climate memory?. Climate Dynamics, 2019, 52, 855-864.	3.8	29
120	An extended network of documentary data from South America and its potential for quantitative precipitation reconstructions back to the 16th century. Geophysical Research Letters, 2009, 36, .	4.0	28
121	Geochemical properties and environmental impacts of seven Campanian tephra layers deposited between 40 and 38ÂkaÂBP in the varved lake sediments of Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews, 2015, 118, 67-83.	3.0	27
122	Detection of human influences on temperature seasonality from the nineteenth century. Nature Sustainability, 2019, 2, 484-490.	23.7	27
123	A Novel Method for the Homogenization of Daily Temperature Series and Its Relevance for Climate Change Analysis. Journal of Climate, 2010, 23, 5325-5331.	3.2	26
124	Regional differences in winter sea level variations in the Baltic Sea for the past 200 yr. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, 60, 384-393.	1.7	25
125	Future Climate Projections. Advances in Global Change Research, 2013, , 53-118.	1.6	24
126	Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments. Climate Dynamics, 2015, 45, 1395-1413.	3.8	24

#	Article	IF	Citations
127	A novel way to detect correlations on multi-time scales, with temporal evolution and for multi-variables. Scientific Reports, 2016, 6, 27707.	3.3	24
128	The LOTRED Approach - A First Step Towards a "Paleoreanalysis―for Europe. PAGES News, 2002, 10, 9-11.	0.3	24
129	An empirical perspective for understanding climate change impacts in Switzerland. Regional Environmental Change, 2018, 18, 205-221.	2.9	23
130	Causes of East Asian Temperature Multidecadal Variability Since 850 CE. Geophysical Research Letters, 2018, 45, 13,485.	4.0	22
131	Weather patterns in eastern Slovakia 1717–1730, based on records from the Breslau meteorological network. International Journal of Climatology, 2008, 28, 1639-1651.	3.5	21
132	Modified climate with long term memory in tree ring proxies. Environmental Research Letters, 2015, 10, 084020.	5.2	21
133	Tree-rings and people – different views on the 1540 Megadrought. Reply to BÃ⅓ntgen et al. 2015. Climatic Change, 2015, 131, 191-198.	3.6	20
134	Summer Cooling Driven by Large Volcanic Eruptions over the Tibetan Plateau. Journal of Climate, 2018, 31, 9869-9879.	3.2	20
135	Atmospheric Forcing of Debris Flows in the Southern Swiss Alps. Journal of Applied Meteorology and Climatology, 2013, 52, 1554-1560.	1.5	18
136	Collating Historic Weather Observations for the East Asian Region: Challenges, Solutions, and Reanalyses. Advances in Atmospheric Sciences, 2018, 35, 899-904.	4.3	17
137	Climate Change in Poland in the Past Centuries and its Relationship to European Climate: Evidence from Reconstructions and Coupled Climate Models. , 2010, , 3-39.		15
138	Early Modern Europe. , 2018, , 265-295.		15
139	Rogation ceremonies: a key to understanding past drought variability in northeastern Spain since 1650. Climate of the Past, 2019, 15, 1647-1664.	3.4	15
140	Global and regional climate responses to national-committed emission reductions under the Paris agreement. Geografiska Annaler, Series A: Physical Geography, 2018, 100, 240-253.	1.5	14
141	Reduced Summer Aboveground Productivity in Temperate C3 Grasslands Under Future Climate Regimes. Earth's Future, 2018, 6, 716-729.	6.3	14
142	Twentyâ€Firstâ€Century Changes in the Eastern Mediterranean Etesians and Associated Midlatitude Atmospheric Circulation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12741-12754.	3.3	14
143	On the link between the Etesian winds, tropopause folds and tropospheric ozone over the Eastern Mediterranean during summer. Atmospheric Research, 2021, 248, 105161.	4.1	14
144	Reply to 'Limited Late Antique cooling'. Nature Geoscience, 2017, 10, 243-243.	12.9	13

#	Article	IF	Citations
145	Disentangling the causes of the 1816 European year without a summer. Environmental Research Letters, 2019, 14, 094019.	5.2	13
146	Holocene Palaeoenvironmental Changes in North-West Europe: Climatic Implications and the Human Dimension. , 2002, , 259-298.		13
147	On the Internal Variability of Simulated Daily Precipitation*. Journal of Climate, 2015, 28, 3624-3630.	3.2	11
148	Tracking changes in the land use, management and drainage status of organic soils as indicators of the effectiveness of mitigation strategies for climate change. Ecological Indicators, 2017, 72, 459-472.	6.3	11
149	The Late Maunder Minimum (1675–1715) — Climax of the â€~Little Ice Age' in Europe. , 2001, , 29-54.		11
150	On the ability of RCMs to capture the circulation pattern of Etesians. Climate Dynamics, 2018, 51, 1687-1706.	3.8	10
151	On Selected Issues and Challenges in Dendroclimatology. Landscape Series, 2007, , 113-132.	0.2	10
152	The Influence of Atlantic Variability on Asian Summer Climate Is Sensitive to the Pattern of the Sea Surface Temperature Anomaly. Journal of Climate, 2020, 33, 7567-7590.	3.2	10
153	The Moon and the Stones. Can the Moon's Attractive Forces Cause Renal Colic?. Journal of Emergency Medicine, 2002, 22, 303-305.	0.7	9
154	Past and Current Climate Changes in the Mediterranean Region. Advances in Global Change Research, 2013, , 9-51.	1.6	9
155	Fine-grained detection of land use and water table changes on organic soils over the period 1992⿿2012 using multiple data sources in the Drömling nature park, Germany. Land Use Policy, 2016, 57, 164-178.	5.6	7
156	Millennium-length precipitation reconstruction over south-eastern Asia: aÂpseudo-proxy approach. Earth System Dynamics, 2019, 10, 347-364.	7.1	7
157	The impact of proxy selection strategies on a millennium-long ensemble of hydroclimatic records in Monsoon Asia. Quaternary Science Reviews, 2019, 223, 105917.	3.0	7
158	Reconstruction of past Mediterranean climate. Eos, 2007, 88, 111-111.	0.1	6
159	Extreme climatic events down-regulate the grassland biomass response to elevated carbon dioxide. Scientific Reports, 2018, 8, 17758.	3.3	5
160	Extending the climatological concept of †Detection and Attribution†to global change ecology in the Anthropocene. Functional Ecology, 2020, 34, 2270-2282.	3.6	5
161	Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century. Environmental Research Letters, 2012, 7, 044029.	5.2	4
162	Plant Functional Types Differ in Their Long-term Nutrient Response to eCO2 in an Extensive Grassland. Ecosystems, $0, 1$.	3.4	4

#	Article	IF	Citations
163	Simulating Extreme Etesians over the Aegean and Implications for Wind Energy Production in Southeastern Europe. Journal of Applied Meteorology and Climatology, 2018, 57, 1123-1134.	1.5	3
164	Impact of Environmental Conditions on Grass Phenology in the Regional Climate Model COSMO-CLM. Atmosphere, 2020, 11, 1364.	2.3	3
165	Analysis of future changes in meteorological drought patterns in Fulda, Germany. International Journal of Climatology, 2020, 40, 5515-5526.	3.5	3
166	Ukrainian early (preâ€1850) historical weather observations. Geoscience Data Journal, 2021, 8, 55-73.	4.4	3
167	Climate variability — observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. , 2006, , 9-29.		3
168	Tracing Climate-Variability: The Search for Climate Dynamics on Decadal to Millennial Time Scales. , 2002, , 125-148.		3
169	A new approach to correct the overestimated persistence in tree-ring width based precipitation reconstructions. Climate Dynamics, 0 , , 1 .	3.8	3
170	Variability of the global atmospheric circulation during the past 100 years. Meteorologische Zeitschrift, 2009, 18, 365-368.	1.0	2
171	Response of the Asian summer Monsoons to a high-latitude thermal forcing: mechanisms and nonlinearities. Climate Dynamics, 2020, 54, 3927-3944.	3.8	2
172	A Sensitivity Assessment of COSMO-CLM to Different Land Cover Schemes in Convection-Permitting Climate Simulations over Europe. Atmosphere, 2021, 12, 1595.	2.3	2
173	The Southeast Asian monsoon and El Niño–Southern Oscillation impact on the summer atmospheric circulation of East Mediterranean during 20th century based on <scp>ERAâ€20C</scp> and <scp>CMIP5</scp> simulations. International Journal of Climatology, 2022, 42, 4893-4908.	3.5	2
174	Weather and climate extremes during the past 100 years. Meteorologische Zeitschrift, 2012, 21, 9-11.	1.0	1
175	Analysis and Interpretation: Spatial Climate Field Reconstructions. , 2018, , 131-139.		1
176	A new era of China-Germany joint research exploring the climate mystery of Earth. Science Bulletin, 2019, 64, 1733-1736.	9.0	1
177	Test Contains Color Images. Biotechnology Letters, 0, , 1-24.	2.2	1
178	The Rising Pulse of the Atmosphere: Variability of the Global Atmospheric Circulation During the Past 100 Years; Monte Verit, Switzerland, 15-20 June 2008. Eos, 2008, 89, 516-516.	0.1	0
179	Test deadline calculation for Joint Workflow 1.7 - 1.8. Biotechnology Letters, 0, , 1-24.	2.2	0
180	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 0, , 1-24.	2.2	0

#	Article	IF	Citations
181	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 0, , 1-24.	2.2	О
182	Issue building article for Joint Workflow 1.7 - 1.8. Biotechnology Letters, 0, , 1-24.	2.2	0
183	Article for issuebuilding instruction Joint Workflow 1.7 - 1.8. Biotechnology Letters, 2005, 29, 239-262.	2.2	O
184	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 2005, 29, 333-356.	2.2	0
185	Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Biotechnology Letters, 0, , 1-24.	2.2	О
186	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 2005, 29, 35-58.	2.2	0
187	Test Contains Color Images. Biotechnology Letters, 0, , 1-24.	2.2	О
188	Demo, demo, demo, demo. Biotechnology Letters, 0, , 1-24.	2.2	0
189	One more article for issuebuilding in the Joint Workflow 1.7 - 1.8. Biotechnology Letters, 2005, 29, 263-286.	2.2	О
190	Lister and Rimmer are going out for a SpACE walk. Biotechnology Letters, 0, , 1-24.	2.2	0
191	Testing the erratum workflow once more, third time!. Biotechnology Letters, 0, , 1-24.	2.2	O
192	Testing the erratum workflow once more, fourth time!. Biotechnology Letters, 0, , 1-24.	2.2	0
193	test cross linking erratum and original article. Biotechnology Letters, 0, , 1-24.	2.2	О
194	Test Contains Color Images. Biotechnology Letters, 0, , 1-24.	2.2	0
195	Testcases for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	O
196	Demo Reinhold Michels in Dordrecht!. Biotechnology Letters, 0, , 1-24.	2.2	0
197	Update Content zip file at stage 200 / 300. Biotechnology Letters, 0, , 1-24.	2.2	0
198	Test address export from SpACE to JEM. Biotechnology Letters, 0, , 1-24.	2.2	0

JýRG LUTERBACHER

#	Article	IF	CITATIONS
199	Last testcase for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	0
200	Testcase 2 for erratum workflow functionality in 1.9. Biotechnology Letters, 0, , 1-24.	2.2	0
201	Test color images on page for Joint Workflow 1.09.04a. Biotechnology Letters, 0, , 1-24.	2.2	O
202	Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Biotechnology Letters, 0, , 1-24.	2.2	0
203	Testcases for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	0
204	Testcases for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	0
205	Monthly North Atlantic Sea Level Pressure reconstruction back to 1750 CE using Artificial Intelligence optimization. Journal of Climate, 2022, , 1-56.	3.2	0