Hamid Reza Sadeghipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6495502/publications.pdf

Version: 2024-02-01

580821 687363 32 650 13 25 g-index citations h-index papers

33 33 33 758 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, <i>Brassica napus </i> L., plants. Soil Science and Plant Nutrition, 2010, 56, 244-253.	1.9	121
2	Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiologiae Plantarum, 2012, 34, 1779-1788.	2.1	74
3	Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes. Theoretical and Experimental Plant Physiology, 2015, 27, 19-29.	2.4	49
4	Silicon Affects Transcellular and Apoplastic Uptake of Some Nutrients in Plants. Pedosphere, 2015, 25, 192-201.	4.0	44
5	Differential Sensitivity of Oleosins to Proteolysis During Oil Body Mobilization in Sunflower Seedlings. Plant and Cell Physiology, 2002, 43, 1117-1126.	3.1	43
6	Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta Physiologiae Plantarum, 2014, 36, 493-502.	2.1	37
7	Alleviation of dormancy in walnut kernels by moist chilling is independent from storage protein mobilization. Tree Physiology, 2007, 27, 519-525.	3.1	30
8	Silicon increases cell wall thickening and lignification in rice (Oryza sativa) root tip under excess Fe nutrition. Plant Physiology and Biochemistry, 2019, 144, 264-273.	5.8	28
9	The potential of glauconitic sandstone as a potassium fertilizer for olive plants. Archives of Agronomy and Soil Science, 2012, 58, 983-993.	2.6	27
10	Beneficial Effects of Silicon Application in Alleviating Salinity Stress in Halophytic Puccinellia Distans Plants. Silicon, 2019, 11, 1001-1010.	3.3	25
11	Light-enhanced oil body mobilization in sunflower seedlings accompanies faster protease action on oleosins. Plant Physiology and Biochemistry, 2003, 41, 309-316.	5. 8	23
12	Redox rather than carbohydrate metabolism differentiates endodormant lateral buds in walnut cultivars with contrasting chilling requirements. Scientia Horticulturae, 2017, 225, 29-37.	3.6	21
13	Oil body mobilization in sunflower seedlings is potentially regulated by thioredoxin h. Plant Physiology and Biochemistry, 2012, 57, 134-142.	5.8	17
14	Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). Journal of Plant Physiology, 2022, 269, 153614.	3 . 5	12
15	Lipid mobilization, gluconeogenesis and ageing-related processes in dormant walnut kernels during moist chilling and warm incubation. Seed Science Research, 2009, 19, 91-101.	1.7	10
16	Facilitated decrease of anions and cations in influent and effluent of sewage treatment plant by vetiver grass (Chrysopogon zizanioides): the uptake of nitrate, nitrite, ammonium, and phosphate. Environmental Science and Pollution Research, 2020, 27, 21506-21516.	5. 3	10
17	Short versus long term effects of cyanide on sugar metabolism and transport in dormant walnut kernels. Plant Science, 2016, 252, 193-204.	3.6	9
18	Redox changes accompanying storage protein mobilization in moist chilled and warm incubated walnut kernels prior to germination. Journal of Plant Physiology, 2013, 170, 6-17.	3.5	8

#	Article	IF	CITATIONS
19	Suppression of mitochondrial dehydrogenases accompanying post-glyoxylate cycle activation of gluconeogenesis and reduced lipid peroxidation events during dormancy breakage of walnut kernels by moist chilling. Scientia Horticulturae, 2013, 161, 314-323.	3.6	8
20	True lipases beside phospholipases contribute to walnut kernel viability loss during controlled deterioration and natural aging. Environmental and Experimental Botany, 2019, 164, 71-83.	4.2	8
21	Induced Thermo-dormancy in Rapeseed (Brassica napus L.) Cultivars by Sub- and Supra-optimal Temperatures. Journal of Plant Growth Regulation, 2021, 40, 2164-2177.	5.1	8
22	Changes in Seed Quality during Seed Development and Maturation in Medicinal Pumpkin (<i>Cucurbita) Tj ETQqC Medicinal Plants, 2011, 17, 249-257.</i>	0 0 rgBT 1.1	/Overlock 10 7
23	The Influence of Seed Priming on Storability of Rapeseed (Brassica napus) Seeds. Seed Science and Technology, 2019, 47, 87-92.	1.4	7
24	Arginase, glutamine synthetase and glutamate dehydrogenase activities in moist chilled and warm-incubated walnut kernels. Trees - Structure and Function, 2010, 24, 425-433.	1.9	4
25	Impacts of fire cues on germination of Brassica napus L. seeds with high and low secondary dormancy. Plant Biology, 2020, 22, 647-654.	3.8	4
26	Bud break accompanies with the enhanced activities of hemicellulase and pectinase and the mobilization of cell wall thickenings in Persian walnut bud scales. Trees - Structure and Function, 2021, 35, 1399-1410.	1.9	4
27	Improved Grain Yield by Phytohormones-Driven Suppression of Pod Abscission and Revitalization of Source-Sink Relationships in Soybean. International Journal of Plant Production, 2022, 16, 467-481.	2.2	4
28	Physiological responses of white mustard grown in Zn-contaminated soils. Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	3
29	Redox metabolism and cell wall modifications as global and local targets respectively, of cyanide induced dormancy release of walnut kernels. Journal of Plant Physiology, 2019, 240, 153013.	3.5	2
30	Differential carbohydrate dynamics in Arabidopsis wild-type and ntrc mutant after trehalose feeding. Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	2
31	Transcriptome alterations of radish shoots exposed to cadmium can be interpreted in the context of leaf senescence. Protoplasma, 2023, 260, 35-62.	2.1	1
32	Would it be possible to use nonpathogenic fungi to improve the turnover of crop residues?. Journal of Basic Microbiology, 2021, 61, 721-735.	3.3	0