Richard d'Arcy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6495235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Science Translational Medicine, 2022, 14, eabm6586.	5.8	37
2	Designing responsive dressings for inflammatory skin disorders; encapsulating antioxidant nanoparticles into biocompatible electrospun fibres. Soft Matter, 2021, 17, 3775-3783.	1.2	8
3	Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. European Polymer Journal, 2021, 149, 110387.	2.6	33
4	Versatile Preparation of Branched Polylactides by Low-Temperature, Organocatalytic Ring-Opening Polymerization in <i>N</i> -Methylpyrrolidone and Their Surface Degradation Behavior. Macromolecules, 2021, 54, 9482-9495.	2.2	7
5	Tuning Ligand Density To Optimize Pharmacokinetics of Targeted Nanoparticles for Dual Protection against Tumor-Induced Bone Destruction. ACS Nano, 2020, 14, 311-327.	7.3	39
6	"Tandem―Nanomedicine Approach against Osteoclastogenesis: Polysulfide Micelles Synergically Scavenge ROS and Release Rapamycin. Biomacromolecules, 2020, 21, 305-318.	2.6	25
7	Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells. ACS Applied Materials & Interfaces, 2019, 11, 31317-31327.	4.0	71
8	Main Chain Polysulfoxides as Active †Stealth' Polymers with Additional Antioxidant and Anti-Inflammatory Behaviour. International Journal of Molecular Sciences, 2019, 20, 4583.	1.8	27
9	Reactive Oxygen Speciesâ€Responsive Nanoparticles for the Treatment of Ischemic Stroke. Advanced Therapeutics, 2019, 2, 1900038.	1.6	51
10	Oxidationâ€Responsive Materials: Biological Rationale, State of the Art, Multiple Responsiveness, and Open Issues. Macromolecular Rapid Communications, 2019, 40, e1800699.	2.0	51
11	Influence of Chain Primary Structure and Topology (Branching) on Crystallization and Thermal Properties: The Case of Polysulfides. Macromolecules, 2019, 52, 2093-2104.	2.2	13
12	Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release, 2018, 272, 114-144.	4.8	59
13	The Effect of Branching (Star Architecture) on Poly(<scp>d</scp> , <scp>l</scp> -lactide) (PDLLA) Degradation and Drug Delivery. Biomacromolecules, 2017, 18, 728-739.	2.6	29
14	Nanomanufacturing through microfluidic-assisted nanoprecipitation: Advanced analytics and structure-activity relationships. International Journal of Pharmaceutics, 2017, 534, 97-107.	2.6	40
15	Branched polyesters: Preparative strategies and applications. Advanced Drug Delivery Reviews, 2016, 107, 60-81.	6.6	46
16	Linear, Star, and Comb Oxidationâ€Responsive Polymers: Effect of Branching Degree and Topology on Aggregation and Responsiveness. Macromolecular Rapid Communications, 2016, 37, 1918-1925.	2.0	20
17	Branched amphiphilic polysulfides: influence of macromolecular architecture on self-assembly and oxidation responsiveness. Materials Research Society Symposia Proceedings, 2015, 1718, 55-63.	0.1	1
18	Influence of Primary Structure on Responsiveness. Oxidative, Thermal, and Thermo-Oxidative Responses in Polysulfides. Macromolecules, 2015, 48, 8108-8120.	2.2	29

#	Article	IF	CITATIONS
19	Mitsunobu Reaction: A Versatile Tool for PEG End Functionalization. Macromolecular Rapid Communications, 2015, 36, 1829-1835.	2.0	11
20	Chemical specificity in REDOX-responsive materials: the diverse effects of different Reactive Oxygen Species (ROS) on polysulfide nanoparticles. Polymer Chemistry, 2014, 5, 1393.	1.9	49
21	Fishing for fire: strategies for biological targeting and criteria for material design in antiâ€inflammatory therapies. Polymers for Advanced Technologies, 2014, 25, 478-498.	1.6	29