Richard d'Arcy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6495235/publications.pdf

Version: 2024-02-01

516710 713466 21 675 16 21 citations h-index g-index papers 21 21 21 891 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 31317-31327.	8.0	71
2	Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release, 2018, 272, 114-144.	9.9	59
3	Reactive Oxygen Speciesâ€Responsive Nanoparticles for the Treatment of Ischemic Stroke. Advanced Therapeutics, 2019, 2, 1900038.	3.2	51
4	Oxidationâ€Responsive Materials: Biological Rationale, State of the Art, Multiple Responsiveness, and Open Issues. Macromolecular Rapid Communications, 2019, 40, e1800699.	3.9	51
5	Chemical specificity in REDOX-responsive materials: the diverse effects of different Reactive Oxygen Species (ROS) on polysulfide nanoparticles. Polymer Chemistry, 2014, 5, 1393.	3.9	49
6	Branched polyesters: Preparative strategies and applications. Advanced Drug Delivery Reviews, 2016, 107, 60-81.	13.7	46
7	Nanomanufacturing through microfluidic-assisted nanoprecipitation: Advanced analytics and structure-activity relationships. International Journal of Pharmaceutics, 2017, 534, 97-107.	5.2	40
8	Tuning Ligand Density To Optimize Pharmacokinetics of Targeted Nanoparticles for Dual Protection against Tumor-Induced Bone Destruction. ACS Nano, 2020, 14, 311-327.	14.6	39
9	Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Science Translational Medicine, 2022, 14, eabm6586.	12.4	37
10	Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. European Polymer Journal, 2021, 149, 110387.	5.4	33
11	Fishing for fire: strategies for biological targeting and criteria for material design in antiâ€inflammatory therapies. Polymers for Advanced Technologies, 2014, 25, 478-498.	3.2	29
12	Influence of Primary Structure on Responsiveness. Oxidative, Thermal, and Thermo-Oxidative Responses in Polysulfides. Macromolecules, 2015, 48, 8108-8120.	4.8	29
13	The Effect of Branching (Star Architecture) on Poly(<scp>d</scp> , <scp>l</scp> -lactide) (PDLLA) Degradation and Drug Delivery. Biomacromolecules, 2017, 18, 728-739.	5.4	29
14	Main Chain Polysulfoxides as Active â€~Stealth' Polymers with Additional Antioxidant and Anti-Inflammatory Behaviour. International Journal of Molecular Sciences, 2019, 20, 4583.	4.1	27
15	"Tandem―Nanomedicine Approach against Osteoclastogenesis: Polysulfide Micelles Synergically Scavenge ROS and Release Rapamycin. Biomacromolecules, 2020, 21, 305-318.	5.4	25
16	Linear, Star, and Comb Oxidationâ€Responsive Polymers: Effect of Branching Degree and Topology on Aggregation and Responsiveness. Macromolecular Rapid Communications, 2016, 37, 1918-1925.	3.9	20
17	Influence of Chain Primary Structure and Topology (Branching) on Crystallization and Thermal Properties: The Case of Polysulfides. Macromolecules, 2019, 52, 2093-2104.	4.8	13
18	Mitsunobu Reaction: A Versatile Tool for PEG End Functionalization. Macromolecular Rapid Communications, 2015, 36, 1829-1835.	3.9	11

RICHARD D'ARCY

#	Article	IF	CITATIONS
19	Designing responsive dressings for inflammatory skin disorders; encapsulating antioxidant nanoparticles into biocompatible electrospun fibres. Soft Matter, 2021, 17, 3775-3783.	2.7	8
20	Versatile Preparation of Branched Polylactides by Low-Temperature, Organocatalytic Ring-Opening Polymerization in $\langle i \rangle N < i \rangle$ -Methylpyrrolidone and Their Surface Degradation Behavior. Macromolecules, 2021, 54, 9482-9495.	4.8	7
21	Branched amphiphilic polysulfides: influence of macromolecular architecture on self-assembly and oxidation responsiveness. Materials Research Society Symposia Proceedings, 2015, 1718, 55-63.	0.1	1