Dimitra Bourboulia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6495187/publications.pdf

Version: 2024-02-01

516215 525886 29 878 16 27 citations g-index h-index papers 30 30 30 1168 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asymmetric Hsp90ÂN Domain SUMOylation Recruits Aha1 and ATP-Competitive Inhibitors. Molecular Cell, 2014, 53, 317-329.	4.5	101
2	Structural and functional basis of protein phosphatase 5 substrate specificity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9009-9014.	3.3	66
3	Tumor suppressor Tsc1 is a new Hsp90 coâ€chaperone that facilitates folding of kinase and nonâ€kinase clients. EMBO Journal, 2017, 36, 3650-3665.	3.5	64
4	Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors. Cell Reports, 2016, 14, 872-884.	2.9	60
5	TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells. Oncotarget, 2013, 4, 163-173.	0.8	60
6	The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding. Nature Communications, 2016, 7, 12037.	5.8	56
7	c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells. Cell Reports, 2015, 12, 1006-1018.	2.9	54
8	Endogenous Angiogenesis Inhibitor Blocks Tumor Growth via Direct and Indirect Effects on Tumor Microenvironment. American Journal of Pathology, 2011, 179, 2589-2600.	1.9	53
9	Co-chaperones TIMP2 and AHA1 Competitively Regulate Extracellular HSP90:Client MMP2 Activity and Matrix Proteolysis. Cell Reports, 2019, 28, 1894-1906.e6.	2.9	50
10	Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer. Cell Reports, 2017, 21, 1883-1895.	2.9	40
11	Chemical Perturbation of Oncogenic Protein Folding: from the Prediction of Locally Unstable Structures to the Design of Disruptors of Hsp90–Client Interactions. Chemistry - A European Journal, 2020, 26, 9459-9465.	1.7	39
12	Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90. Cell Reports, 2019, 26, 1344-1356.e5.	2.9	38
13	Targeting Hsp90 in urothelial carcinoma. Oncotarget, 2015, 6, 8454-8473.	0.8	31
14	Extracellular Phosphorylation of TIMP-2 by Secreted c-Src Tyrosine Kinase Controls MMP-2 Activity. IScience, 2018, 1, 87-96.	1.9	29
15	Molecular mechanisms of tissue inhibitor of metalloproteinase 2 in the tumor microenvironment. Molecular and Cellular Therapies, 2014, 2, 17.	0.2	26
16	The tumor suppressor folliculin inhibits lactate dehydrogenase A and regulates the Warburg effect. Nature Structural and Molecular Biology, 2021, 28, 662-670.	3.6	19
17	TRAP1 Chaperones the Metabolic Switch in Cancer. Biomolecules, 2022, 12, 786.	1.8	14
18	Decrypting the chaperone code. Journal of Biological Chemistry, 2021, 296, 100293.	1.6	12

#	Article	IF	CITATIONS
19	Comprehensive genomic profiling of metastatic collecting duct carcinoma, renal medullary carcinoma, and clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 367.e1-367.e5.	0.8	11
20	The dynamic interactome of human Aha1 upon Y223 phosphorylation. Data in Brief, 2015, 5, 752-755.	0.5	10
21	Detection and Analysis of Extracellular Hsp90 (eHsp90). Methods in Molecular Biology, 2018, 1709, 321-329.	0.4	9
22	MMPs, tyrosine kinase signaling and extracellular matrix proteolysis in kidney cancer. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 316-321.	0.8	9
23	Hsp90 chaperone code and the tumor suppressor VHL cooperatively regulate the mitotic checkpoint. Cell Stress and Chaperones, 2021, 26, 965-971.	1.2	9
24	Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nature Reviews Urology, 2022, 19, 305-320.	1.9	9
25	The Role of Heat Shock Protein-90 in the Pathogenesis of Birt-Hogg-Dubé and Tuberous Sclerosis Complex Syndromes. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 322-326.	0.8	6
26	Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules, 2022, 12, 928.	1.8	2
27	The 2021 FASEB Virtual Catalyst Conference on Extracellular and Organismal Proteostasis in Health and Disease, February 3â€4, 2021. FASEB Journal, 2021, 35, e21631.	0.2	1
28	Carcinomas of the renal medulla: A comprehensive genomic profiling (CGP) study Journal of Clinical Oncology, 2018, 36, 640-640.	0.8	0
29	Carcinomas of the renal medulla: A comprehensive genomic profiling (CGP) study Journal of Clinical Oncology, 2018, 36, e16586-e16586.	0.8	0