
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6494668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The formation and fate of internal waves in the South China Sea. Nature, 2015, 521, 65-69.	13.7	487
2	Speed and Evolution of Nonlinear Internal Waves Transiting the South China Sea. Journal of Physical Oceanography, 2010, 40, 1338-1355.	0.7	188
3	Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography, 2008, 64, 789-802.	0.7	156
4	The Breaking and Scattering of the Internal Tide on a Continental Slope. Journal of Physical Oceanography, 2011, 41, 926-945.	0.7	146
5	Large-Amplitude Internal Solitary Waves Observed in the Northern South China Sea: Properties and Energetics. Journal of Physical Oceanography, 2014, 44, 1095-1115.	0.7	118
6	Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. Journal of Geophysical Research: Oceans, 2014, 119, 2129-2142.	1.0	101
7	Turbulent properties in a homogeneous tidal bottom boundary layer. Journal of Geophysical Research, 1999, 104, 1245-1257.	3.3	91
8	The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean. Bulletin of the American Meteorological Society, 2015, 96, 1257-1279.	1.7	88
9	Assessing the west ridge of Luzon Strait as an internal wave mediator. Journal of Oceanography, 2007, 63, 897-911.	0.7	75
10	Trapped Core Formation within a Shoaling Nonlinear Internal Wave. Journal of Physical Oceanography, 2012, 42, 511-525.	0.7	74
11	Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letters, 2006, 33, .	1.5	71
12	Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. Journal of Marine Systems, 2009, 76, 383-396.	0.9	70
13	Lagrangian Measurements of Waves and Turbulence in Stratified Flows. Journal of Physical Oceanography, 2000, 30, 641-655.	0.7	69
14	The Kolmogorov constant for the Lagrangian velocity spectrum and structure function. Physics of Fluids, 2002, 14, 4456-4459.	1.6	64
15	From Luzon Strait to Dongsha Plateau: Stages in the Life of an Internal Wave. Oceanography, 2011, 24, 64-77.	0.5	63
16	Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden-Julian Oscillations. Journal of Geophysical Research: Oceans, 2013, 118, 4945-4964.	1.0	60
17	Lagrangian frequency spectra of vertical velocity and vorticity in high-Reynolds-number oceanic turbulence. Journal of Fluid Mechanics, 1998, 362, 177-198.	1.4	51
18	PILOT WHALES FOLLOW INTERNAL SOLITARY WAVES IN THE SOUTH CHINA SEA. Marine Mammal Science, 2007, 23, 193-196.	0.9	47

#	Article	IF	CITATIONS
19	The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden–Julian Oscillation events. Journal of Geophysical Research: Oceans, 2014, 119, 4638-4652.	1.0	43
20	The variability of internal tides in the Northern South China Sea. Journal of Oceanography, 2013, 69, 619-630.	0.7	42
21	Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification. Journal of Physical Oceanography, 2012, 42, 2121-2142.	0.7	41
22	The Kuroshio and Luzon Undercurrent East of Luzon Island. Oceanography, 2015, 28, 54-63.	0.5	41
23	Observations of the cold wake of Typhoon Fanapi (2010). Geophysical Research Letters, 2013, 40, 316-321.	1.5	40
24	Measurement of Turbulent Kinetic Energy Dissipation Rate with a Lagrangian Float. Journal of Atmospheric and Oceanic Technology, 2006, 23, 964-976.	0.5	39
25	Estimates of Surface Wind Stress and Drag Coefficients in Typhoon Megi. Journal of Physical Oceanography, 2017, 47, 545-565.	0.7	39
26	Turbulent mixing within the <scp>K</scp> uroshio in the <scp>T</scp> okara <scp>S</scp> trait. Journal of Geophysical Research: Oceans, 2017, 122, 7082-7094.	1.0	39
27	Modulation of equatorial turbulence by tropical instability waves. Geophysical Research Letters, 2008, 35, .	1.5	37
28	Eddyâ€Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophysical Research Letters, 2015, 42, 8098-8105.	1.5	37
29	An Electromagnetic Vorticity and Velocity Sensor for Observing Finescale Kinetic Fluctuations in the Ocean. Journal of Atmospheric and Oceanic Technology, 1999, 16, 1647-1667.	0.5	36
30	Trains of large Kelvinâ€Helmholtz billows observed in the Kuroshio above a seamount. Geophysical Research Letters, 2016, 43, 8654-8661.	1.5	36
31	High-Frequency Internal Waves on the Oregon Continental Shelf. Journal of Physical Oceanography, 2007, 37, 1956-1967.	0.7	35
32	A Composite View of Surface Signatures and Interior Properties of Nonlinear Internal Waves: Observations and Applications. Journal of Atmospheric and Oceanic Technology, 2008, 25, 1218-1227.	0.5	35
33	High-Frequency Internal Waves at 0°, 140°W and Their Possible Relationship to Deep-Cycle Turbulence. Journal of Physical Oceanography, 1996, 26, 581-600.	0.7	34
34	Evolution of the Kuroshio Tropical Water from the Luzon Strait to the east of Taiwan. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 68-81.	0.6	34
35	Transition from partly standing to progressive internal tides in Monterey Submarine Canyon. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 104, 164-173.	0.6	31
36	Ocean feedback to pulses of the Madden–Julian Oscillation in the equatorial Indian Ocean. Nature Communications, 2016, 7, 13203.	5.8	31

#	Article	IF	CITATIONS
37	Energy Sinks for Lee Waves in Shear Flow. Journal of Physical Oceanography, 2019, 49, 2851-2865.	0.7	31
38	Internal tides on the East China Sea Continental Slope. Journal of Marine Research, 2013, 71, 151-185.	0.3	27
39	Wind stress and nearâ€surface shear in the equatorial Atlantic Ocean. Geophysical Research Letters, 2014, 41, 1226-1231.	1.5	26
40	Scaling of Drag Coefficients Under Five Tropical Cyclones. Geophysical Research Letters, 2019, 46, 3349-3358.	1.5	21
41	Nonlinear Internal Wave Properties Estimated with Moored ADCP Measurements. Journal of Atmospheric and Oceanic Technology, 2011, 28, 802-815.	0.5	20
42	Normal-Mode Decomposition of Small-Scale Oceanic Motions. Journal of Physical Oceanography, 1992, 22, 1583-1595.	0.7	19
43	Variations of Equatorial Shear, Stratification, and Turbulence Within a Tropical Instability Wave Cycle. Journal of Geophysical Research: Oceans, 2019, 124, 1858-1875.	1.0	19
44	Turbulence spectra and local similarity scaling in a strongly stratified oceanic bottom boundary layer. Continental Shelf Research, 2004, 24, 375-392.	0.9	16
45	Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan. Journal of Geophysical Research, 2011, 116, .	3.3	16
46	Small-Scale Potential Vorticity in the Upper-Ocean Thermocline. Journal of Physical Oceanography, 2019, 49, 1845-1872.	0.7	16
47	Consistency relations for gravity and vortical modes in the ocean. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 1595-1612.	1.6	14
48	Formation of Recirculating Cores in Convectively Breaking Internal Solitary Waves of Depression Shoaling over Gentle Slopes in the South China Sea. Journal of Physical Oceanography, 2020, 50, 1137-1157.	0.7	14
49	Upper Ocean Response to the Atmospheric Cold Pools Associated With the Maddenâ€Julian Oscillation. Geophysical Research Letters, 2018, 45, 5020-5029.	1.5	13
50	Longâ€Term Observations of Shoaling Internal Solitary Waves in the Northern South China Sea. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017129.	1.0	13
51	Impact of the Madden–Julian Oscillation on the Indonesian Throughflow in the Makassar Strait during the CINDY/DYNAMO Field Campaign. Journal of Climate, 2016, 29, 6085-6108.	1.2	11
52	Internal solitary waves with subsurface cores. Journal of Fluid Mechanics, 2019, 873, 1-17.	1.4	11
53	Lagrangian analysis of a convective mixed layer. Journal of Geophysical Research, 2002, 107, 8-1.	3.3	9
54	Autonomous microstructure EM-APEX floats. Methods in Oceanography, 2016, 17, 282-295.	1.5	9

#	Article	IF	CITATIONS
55	Remote Ocean Response to the Madden–Julian Oscillation during the DYNAMO Field Campaign: Impact on Somali Current System and the Seychelles–Chagos Thermocline Ridge. Atmosphere, 2017, 8, 171.	1.0	9
56	Combining Observations from Multiple Platforms across the Kuroshio Northeast of Luzon: A Highlight on PIES Data. Journal of Atmospheric and Oceanic Technology, 2016, 33, 2185-2203.	0.5	7
57	Turbulent mixing on sloping bottom of an energetic tidal channel. Continental Shelf Research, 2018, 166, 44-53.	0.9	7
58	Simulation of Deep Cycle Turbulence by a Global Ocean General Circulation Model. Geophysical Research Letters, 2020, 47, e2020GL088384.	1.5	7
59	Estimates of Surface Waves Using Subsurface EM-APEX Floats under Typhoon Fanapi 2010. Journal of Atmospheric and Oceanic Technology, 2018, 35, 1053-1075.	0.5	5
60	Intensification of the subpolar front in the Sea of Japan during winter cyclones. Journal of Geophysical Research: Oceans, 2016, 121, 2253-2267.	1.0	4
61	The Mixed Layer Salinity Budget in the Central Equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017280.	1.0	4
62	Climate Process Team: Improvement of Ocean Component of NOAA Climate Forecast System Relevant to Maddenâ€Julian Oscillation Simulations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002658.	1.3	3
63	Three-dimensional perspective on a convective instability and transition to turbulence in an internal solitary wave of depression shoaling over gentle slopes. Environmental Fluid Mechanics, 2023, 23, 1015-1035.	0.7	3
64	Two-Dimensional Wavenumber Spectra on the Horizontal Submesoscale and Vertical Finescale. Journal of Physical Oceanography, 2022, 52, 2009-2028.	0.7	1
65	Shear Instability and Turbulent Mixing in the Stratified Shear Flow Behind a Topographic Ridge at High Reynolds Number. Frontiers in Marine Science, 2022, 9, .	1.2	1
66	Near-inertial wave interactions and turbulence production in a Kuroshio anticyclonic eddy. Journal of Physical Oceanography, 2022, , .	0.7	0