List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6494165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructural evolution, mechanical behaviors and strengthening mechanism of 300ÂM steel subjected to multi-pass laser shock peening. Optics and Laser Technology, 2022, 148, 107726.	4.6	22
2	Effect of Cu foam on the microstructure and strength of the SiCf/SiC-GH536 brazed joint. Ceramics International, 2022, 48, 12945-12953.	4.8	15
3	A combined experimental-numerical study of residual stress and its relaxation on laser shock peened SiC particle-reinforced 2009 aluminum metal matrix composites. Surface and Coatings Technology, 2022, 430, 127988.	4.8	9
4	Laser Fabricated Cu ₂ O uO/Ag Nanocomposite Films for SERS Application**. ChemistrySelect, 2022, 7, .	1.5	2
5	Gradient microstructure evolution in laser shock peened Ti6Al4V titanium alloy. Surface and Coatings Technology, 2022, 437, 128378.	4.8	22
6	Laser Shock Peening of Ti6Al4V Alloy with Combined Nanosecond and Femtosecond Laser Pulses. Metals, 2022, 12, 26.	2.3	5
7	Effect of laser shock peening on high cycle fatigue failure of bolt connected AA2024-T351 hole structures. Engineering Failure Analysis, 2022, 141, 106625.	4.0	7
8	Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy. International Journal of Fatigue, 2021, 145, 106081.	5.7	32
9	Laser Shock Peening of SiCp/2009Al Composites: Microstructural Evolution, Residual Stress and Fatigue Behavior. Materials, 2021, 14, 1082.	2.9	10
10	Effects of Heat Treatments on Microstructures and Mechanical Properties of Ti6Al4V Alloy Produced by Laser Solid Forming. Metals, 2021, 11, 346.	2.3	10
11	Effects of laser shock peening on microstructure and mechanical properties of TIG welded alloy 600 joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140914.	5.6	18
12	Flexible Nonenzymatic Glucose Sensing with Oneâ€Step Laserâ€Fabricated Cu ₂ O/Cu Porous Structure. Advanced Engineering Materials, 2021, 23, 2100192.	3.5	13
13	Study on Fatigue Crack Propagation and Fracture Characterization of 7050-T7451 Friction Stir Welded Joints. Journal of Materials Engineering and Performance, 2021, 30, 5625-5632.	2.5	3
14	Combining manufacturing of titanium alloy through direct energy deposition and laser shock peening processes. Materials and Design, 2021, 203, 109626.	7.0	37
15	Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening. Corrosion Science, 2021, 184, 109364.	6.6	22
16	Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 818, 141382.	5.6	12
17	Synthesis of Free-Standing Silver Foam via Oriented and Additive Nanojoining. ACS Applied Materials & Interfaces, 2021, 13, 38637-38646.	8.0	3
18	Thermal Properties of Laserâ€Fabricated Copper–Carbon Composite Films on Polyimide Substrate. Advanced Engineering Materials, 2021, 23, 2100623.	3.5	4

#	Article	IF	CITATIONS
19	Laser Erasing and Rewriting of Flexible Copper Circuits. Nano-Micro Letters, 2021, 13, 184.	27.0	5
20	Fatigue crack growth in residual stress fields of laser shock peened Ti6Al4V titanium alloy. Journal of Alloys and Compounds, 2021, 887, 161427.	5.5	37
21	Laserâ€Patterned Copper Electrodes for Proximity and Tactile Sensors. Advanced Materials Interfaces, 2020, 7, 1901845.	3.7	10
22	Fatigue behavior of Ti-17 titanium alloy subjected to different laser shock peened regions and its microstructural response. Surface and Coatings Technology, 2020, 383, 125284.	4.8	30
23	Laser assisted ink-printing of copper oxide nanoplates for memory device. Materials Letters, 2020, 261, 127097.	2.6	7
24	Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties. Surface and Coatings Technology, 2020, 396, 125908.	4.8	74
25	High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications. Acta Metallurgica Sinica (English Letters), 2020, 33, 1543-1555.	2.9	24
26	Stabilizing the sintered nanopore bondline by residual organics for high temperature electronics. Microelectronics Reliability, 2020, 111, 113727.	1.7	8
27	Microstructure and mechanical properties of laser shock peened 38CrSi steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139486.	5.6	45
28	Low-temperature sintering of silver patterns on polyimide substrate printed with particle-free ink. Nanotechnology, 2020, 31, 305301.	2.6	10
29	Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy. Corrosion Science, 2020, 170, 108655.	6.6	48
30	Simulation and Experimental Research on Residual Stress Field of Cemented Carbide YG8 by Laser Shock Processing. , 2019, , .		0
31	Reactive brazing of silicon nitride to Invar alloy using Ni foam and AgCuTi intermediate layers. Ceramics International, 2019, 45, 13979-13987.	4.8	41
32	Near-ideal compressive strength of nanoporous silver composed of nanowires. Acta Materialia, 2019, 173, 163-173.	7.9	12
33	SiC chip attachment sintered by nanosilver paste and their shear strength evaluation. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 1055-1063.	2.5	11
34	Fatigue of Ti-17 titanium alloy with hole drilled prior and post to laser shock peening. Optics and Laser Technology, 2019, 115, 166-170.	4.6	33
35	Fast X-ray Differential Phase Contrast Imaging with One Exposure and without Movements. Scientific Reports, 2019, 9, 1113.	3.3	8
36	Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. Journal of Alloys and Compounds, 2019, 774, 487-494.	5.5	65

#	Article	IF	CITATIONS
37	Effect of laser shock processing with post-machining and deep cryogenic treatment on fatigue life of GH4169 super alloy. International Journal of Fatigue, 2019, 119, 261-267.	5.7	26
38	Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. Journal of Alloys and Compounds, 2018, 747, 255-265.	5.5	245
39	Microstructure and mechanical properties of laser welded dissimilar joints between QP and boron alloyed martensitic steels. Journal of Materials Processing Technology, 2018, 259, 58-67.	6.3	36
40	Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 124-133.	5.6	56
41	Influence of alloy elements on microstructure and mechanical properties of Al/steel dissimilar joint by laser welding/brazing. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 427-433.	2.5	42
42	Effects of Laser Shock Processing on Impact Toughness of Ti-17 Titanium Alloy. High Temperature Materials and Processes, 2018, 37, 325-332.	1.4	2
43	Hardness Evolution and High Temperature Mechanical Properties of Laser Welded DP980 Steel Joints. High Temperature Materials and Processes, 2018, 37, 587-595.	1.4	3
44	Microstructural evolution and thermal stress relaxation of Al2O3/1Cr18Ni9Ti brazed joints with nickel foam. Vacuum, 2018, 148, 18-26.	3.5	48
45	Electrical and Mechanical Properties of Ink Printed Composite Electrodes on Plastic Substrates. Applied Sciences (Switzerland), 2018, 8, 2101.	2.5	24
46	Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 94-104.	5.6	60
47	Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel. Metals, 2018, 8, 48.	2.3	39
48	Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy. Surface and Coatings Technology, 2018, 349, 503-510.	4.8	131
49	The Superplastic Deformation Behavior and Phase Evolution of Ti-6Al-4V Alloy at Constant Tensile Velocity. High Temperature Materials and Processes, 2017, 36, 55-62.	1.4	11
50	Effects of Laser Shock Processing on Fatigue Crack Growth in Ti-17 Titanium Alloy. Journal of Materials Engineering and Performance, 2017, 26, 813-821.	2.5	12
51	Nanoscale Wire Bonding of Individual Ag Nanowires on Au Substrate at Room Temperature. Nano-Micro Letters, 2017, 9, 26.	27.0	16
52	Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear. Optics and Laser Technology, 2017, 94, 15-24.	4.6	34
53	Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 065016.	2.0	34
54	Impact toughness and microstructural response of Ti-17 titanium alloy subjected to laser shock peening. Surface and Coatings Technology, 2017, 327, 32-41.	4.8	35

#	Article	IF	CITATIONS
55	Transient Liquid Phase Bonding of Nickel-Base Single Crystal Alloy with a Novel Ni-Cr-Co-Mo-W-Ta-Re-B Amorphous Interlayer. High Temperature Materials and Processes, 2017, 36, 677-682.	1.4	4
56	Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering. Journal of Alloys and Compounds, 2017, 690, 86-94.	5.5	43
57	Microstructure- and Strain Rate-Dependent Tensile Behavior of Fiber Laser-Welded DP980 Steel Joint. Journal of Materials Engineering and Performance, 2016, 25, 668-676.	2.5	23
58	Influence of Laser Shock Processing on WC–Co Hardmetal. Materials and Manufacturing Processes, 2016, 31, 794-801.	4.7	5
59	Low-Temperature Sintering Bonding Using Silver Nanoparticle Paste for Electronics Packaging. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	29
60	Interfacial reactions and zigzag groove strengthening of C/C composite and Rene N5 single crystal brazed joint. Ceramics International, 2015, 41, 11605-11610.	4.8	40
61	Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5149-5157.	2.2	57
62	The braze joint between Al2O3 to 1Cr18Ni9Ti using a nickel foam. Welding in the World, Le Soudage Dans Le Monde, 2015, 59, 491-496.	2.5	14
63	Microstructure evolution and mechanical properties of vacuum-brazed C/C composite with AgCuTi foil. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 564, 192-198.	5.6	59
64	A STUDY ON MICROSTRUCTURE CHARACTERISTICS OF <i>IN SITU</i> FORMED TiC REINFORCED COMPOSITE COATINGS. Surface Review and Letters, 2012, 19, 1250016.	1.1	0
65	SURFACE PROPERTIES OF THE IN SITU FORMED CERAMICS REINFORCED COMPOSITE COATINGS ON TI-3AL-2V ALLOYS. Surface Review and Letters, 2012, 19, 1250009.	1.1	3
66	The study of multiple thermal cycle of HTS YBCO bulk. Physica C: Superconductivity and Its Applications, 2012, 474, 25-28.	1.2	2
67	Joining of textured YBCO with YBCO added Ag2O additive. Physica C: Superconductivity and Its Applications, 2010, 470, 482-486.	1.2	7