Deli Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6494121/deli-wu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

87	2,810	28	51
papers	citations	h-index	g-index
88	3,857 ext. citations	10.6	5.86
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
87	Molecular understanding of aqueous electrolyte properties and dielectric effect in a CDI system. Chemical Engineering Journal, 2022, 435, 134750	14.7	O
86	Enhanced phosphate removal by nano-lanthanum hydroxide embedded silica aerogel composites: Superior performance and insights into specific adsorption mechanism. <i>Separation and Purification Technology</i> , 2022 , 285, 120365	8.3	1
85	Sequestration of free and chelated Ni(II) by structural Fe(II): Performance and mechanisms. <i>Environmental Pollution</i> , 2022 , 292, 118374	9.3	O
84	Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. <i>Journal of Hazardous Materials</i> , 2022 , 423, 126991	12.8	3
83	High-valent cobalt-oxo species triggers hydroxyl radical for collaborative environmental decontamination. <i>Applied Catalysis B: Environmental</i> , 2022 , 300, 120722	21.8	7
82	Biodegradation and potential effect of ranitidine during aerobic composting of human feces <i>Chemosphere</i> , 2022 , 296, 134062	8.4	О
81	Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization Water Research, 2022 , 216, 118290	12.5	1
80	Effect of anthraquinone-2,6-disulfonate (AQDS) on anaerobic digestion under ammonia stress: Triggering mediated interspecies electron transfer (MIET) <i>Science of the Total Environment</i> , 2022 , 1547	158.2	O
79	Reduced cathodic scale and enhanced electrochemical precipitation of Ca and Mg by a novel fenced cathode structure: Formation of strong alkaline microenvironment and favorable crystallization. <i>Water Research</i> , 2021 , 209, 117893	12.5	O
78	Enhanced Oxidation of Organic Contaminants by Iron(II)-Activated Periodate: The Significance of High-Valent Iron-Oxo Species. <i>Environmental Science & Environmental Science &</i>	10.3	46
77	Insight into electrosorption behavior of monovalent ions and their selectivity in capacitive deionization: An atomic level study by molecular dynamics simulation. <i>Chemical Engineering Journal</i> , 2021 , 415, 128920	14.7	7
76	Can flow-electrode capacitive deionization become a new in-situ soil remediation technology for heavy metal removal?. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123568	12.8	22
75	Cu(III) generation and air sparging extend catalytic effectiveness of Cu2S/H2O2 from neutral to acidic condition: performance and mechanism in comparison with CuS/H2O2. <i>Journal of Cleaner Production</i> , 2021 , 278, 123572	10.3	9
74	Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology. <i>ACS ES&T Water</i> , 2021 , 1, 175-184		16
73	Remarkable phosphate recovery from wastewater by a novel Ca/Fe composite: Synergistic effects of crystal structure and abundant oxygen-vacancies. <i>Chemosphere</i> , 2021 , 266, 129102	8.4	12
72	Partial nitrification performance and microbial community evolution in the membrane bioreactor for saline stream treatment. <i>Bioresource Technology</i> , 2021 , 320, 124419	11	4
71	Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system. <i>Water Research</i> , 2021 , 190, 116782	12.5	12

70	Mechanistic insight into the generation of high-valent iron-oxo species via peroxymonosulfate activation: An experimental and density functional theory study. <i>Chemical Engineering Journal</i> , 2021 , 420, 130477	14.7	5
69	Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination. <i>Environmental Science & Environmental </i>	9 ^{10.3}	O
68	Selective recovery of phosphorus and urea from fresh human urine using a liquid membrane chamber integrated flow-electrode electrochemical system. <i>Water Research</i> , 2021 , 202, 117423	12.5	7
67	Highly selective oxidation of organic contaminants in the Ru-activated peroxymonosulfate process: The dominance of RuO species. <i>Chemosphere</i> , 2021 , 285, 131544	8.4	1
66	Selective recovery of formic acid from wastewater using an ion-capture electrochemical system integrated with a liquid-membrane chamber. <i>Chemical Engineering Journal</i> , 2021 , 425, 131429	14.7	2
65	Non-selective degradation of organic pollutants via dioxygen activation induced by Fe(II)-tetrapolyphosphate complexes: Identification of reactive oxidant and kinetic modeling. <i>Chemical Engineering Journal</i> , 2020 , 398, 125603	14.7	14
64	Activation of peroxymonosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: Electron transfer and transformation products. <i>Separation and Purification Technology</i> , 2020 , 247, 116942	8.3	22
63	Sulfate radical-induced destruction of emerging contaminants using traces of cobalt ions as catalysts. <i>Chemosphere</i> , 2020 , 256, 127061	8.4	12
62	Enhancing the degradation of bisphenol A by dioxygen activation using bimetallic Cu/Fe@zeolite: Critical role of Cu(I) and superoxide radical. <i>Separation and Purification Technology</i> , 2020 , 253, 117550	8.3	6
61	Enhanced mineralization of oxalate by highly active and Stable Ce(III)-Doped g-CN catalyzed ozonation. <i>Chemosphere</i> , 2020 , 239, 124612	8.4	28
60	Enhancing the dioxygen activation for arsenic removal by Cu0 nano-shell-decorated nZVI: Synergistic effects and mechanisms. <i>Chemical Engineering Journal</i> , 2020 , 384, 123295	14.7	22
59	Activation of dissolved molecular oxygen by Cu(0) for bisphenol a degradation: Role of Cu(0) and formation of reactive oxygen species. <i>Chemosphere</i> , 2020 , 241, 125034	8.4	7
58	Nonradical degradation of microorganic pollutants by magnetic N-doped graphitic carbon: A complement to the unactivated peroxymonosulfate. <i>Chemical Engineering Journal</i> , 2020 , 392, 123724	14.7	14
57	Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater. <i>Journal of Hazardous Materials</i> , 2020 , 389, 121866	12.8	9
56	Unraveling the Overlooked Involvement of High-Valent Cobalt-Oxo Species Generated from the Cobalt(II)-Activated Peroxymonosulfate Process. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	69
55	MOF-derived metal-free N-doped porous carbon mediated peroxydisulfate activation via radical and non-radical pathways: Role of graphitic N and C O. <i>Chemical Engineering Journal</i> , 2020 , 380, 122584	14.7	65
54	Spherical Cu2O-Fe3O4@chitosan bifunctional catalyst for coupled Cr-organic complex oxidation and Cr(VI) capture-reduction. <i>Chemical Engineering Journal</i> , 2020 , 383, 123105	14.7	24
53	A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: The importance of covalent bond forming and magnesium coagulation. <i>Chemical Engineering Journal</i> , 2019 , 374, 904-913	14.7	45

52	Comparative performance of green rusts generated in Fe-electrocoagulation for Cd removal from high salinity wastewater: Mechanisms and optimization. <i>Journal of Environmental Management</i> , 2019 , 237, 495-503	7.9	9
51	Role of reactive oxygen species in As(III) oxidation by carbonate structural Fe(II): A surface-mediated pathway. <i>Chemical Engineering Journal</i> , 2019 , 368, 980-987	14.7	11
50	Enhanced mineralization of dimethyl phthalate by heterogeneous ozonation over nanostructured Cu-Fe-O surfaces: Synergistic effect and radical chain reactions. <i>Separation and Purification Technology</i> , 2019 , 209, 588-597	8.3	40
49	The role of structural elements and its oxidative products on the surface of ferrous sulfide in reducing the electron-withdrawing groups of tetracycline. <i>Chemical Engineering Journal</i> , 2019 , 378, 122	:195 ⁷	8
48	TiO2 and SiO2 Nanoparticles Combined with Surfactants Mitigate the Toxicity of Cd2+ to Wheat Seedlings. <i>Water, Air, and Soil Pollution</i> , 2019 , 230, 1	2.6	5
47	Initial dissolved oxygen-adjusted electrochemical generation of sulfate green rust for cadmium removal using a closed-atmosphere FeBlectrocoagulation system. <i>Chemical Engineering Journal</i> , 2019 , 359, 1411-1418	14.7	14
46	Cu(II)-enhanced activation of molecular oxygen using Fe(II): Factors affecting the yield of oxidants. <i>Chemosphere</i> , 2019 , 221, 383-391	8.4	4
45	Factors and mechanisms that influence the reactivity of trivalent copper: A novel oxidant for selective degradation of antibiotics. <i>Water Research</i> , 2019 , 149, 1-8	12.5	31
44	Highly efficient degradation of dimethyl phthalate from Cu(II) and dimethyl phthalate wastewater by EDTA enhanced ozonation: Performance, intermediates and mechanism. <i>Journal of Hazardous Materials</i> , 2019 , 366, 378-385	12.8	21
43	Activation of persulfate with metalBrganic framework-derived nitrogen-doped porous Co@C nanoboxes for highly efficient p-Chloroaniline removal. <i>Chemical Engineering Journal</i> , 2019 , 358, 408-41	18 ^{4.7}	98
42	Enhanced As(III) Sequestration Using Sulfide-Modified Nano-Scale Zero-Valent Iron with a Characteristic CoreBhell Structure: Sulfidation and As Distribution. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3039-3048	8.3	46
41	Activation of Persulfates Using Siderite as a Source of Ferrous Ions: Sulfate Radical Production, Stoichiometric Efficiency, and Implications. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3624-36	3 ⁸ 1 ³	47
40	Degradation of 1,4-dioxane via controlled generation of radicals by pyrite-activated oxidants: Synergistic effects, role of disulfides, and activation sites. <i>Chemical Engineering Journal</i> , 2018 , 336, 416-	-4 ¹ 26 ⁷	49
39	Facile synthesis of highly reactive and stable Fe-doped g-CN composites for peroxymonosulfate activation: A novel nonradical oxidation process. <i>Journal of Hazardous Materials</i> , 2018 , 354, 63-71	12.8	102
38	Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: Surface reaction mechanism and sulfur-mediated cycling of iron species. <i>Chemical Engineering Journal</i> , 2018 , 333, 657-66	5 4 4.7	127
37	Supported palladium nanoparticles as highly efficient catalysts for radical production: Support-dependent synergistic effects. <i>Chemosphere</i> , 2018 , 207, 27-32	8.4	3
36	Applicability study on the degradation of acetaminophen via an HO/PDS-based advanced oxidation process using pyrite. <i>Chemosphere</i> , 2018 , 212, 438-446	8.4	23
35	Oxidation of acetaminophen by Green rust coupled with Cu(II) via dioxygen activation: The role of various interlayer anions (CO32[ISO42[ICI]] Chemical Engineering Journal, 2018, 350, 930-938	14.7	12

34	Continuous-flow ozonation over modified ceramsite: implications for the degradation of cation red x-GRL. <i>Water Science and Technology</i> , 2018 , 78, 2577-2585	2.2	
33	Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms. <i>Environmental Science & Environmental Science & Environme</i>	3 2 6 ^{.3}	61
32	Immobilization of selenite from aqueous solution by structural ferrous hydroxide complexes. <i>RSC Advances</i> , 2017 , 7, 13398-13405	3.7	6
31	Degradation of contaminants by Cu-activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu). <i>Journal of Hazardous Materials</i> , 2017 , 331, 81-87	12.8	59
30	Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/AlO) catalyzed peroxymonosulfate. <i>Water Research</i> , 2017 , 120, 12-21	12.5	108
29	Ozonation of dimethyl phthalate catalyzed by highly active CuO-FeO nanoparticles prepared with zero-valent iron as the innovative precursor. <i>Environmental Pollution</i> , 2017 , 227, 73-82	9.3	28
28	Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite. <i>Chemosphere</i> , 2017 , 188, 557-566	8.4	62
27	A metal-free method of generating sulfate radicals through direct interaction of hydroxylamine and peroxymonosulfate: Mechanisms, kinetics, and implications. <i>Chemical Engineering Journal</i> , 2017 , 330, 906-913	14.7	50
26	Opposite effects of dissolved oxygen on the removal of As(III) and As(V) by carbonate structural Fe(II). <i>Scientific Reports</i> , 2017 , 7, 17015	4.9	17
25	Mineral transformation of structural Fe(II) hydroxides with O 2 , Cu(II), Cr(VI) and NO 2 Ifor enhanced arsenite sequestration. <i>Chemical Engineering Journal</i> , 2017 , 311, 247-254	14.7	6
24	Enhanced mineralization of aqueous Reactive Black 5 by catalytic ozonation in the presence of modified GAC. <i>Desalination and Water Treatment</i> , 2016 , 57, 14997-15006		3
23	Sequestration of hexavalent chromium by Fe(II)/Fe(III) hydroxides: Structural Fe(II) reactivity and PO43leffect. <i>Chemical Engineering Journal</i> , 2016 , 283, 948-955	14.7	28
22	Advantages of aeration in arsenic removal and arsenite oxidation by structural Fe(II) hydroxides in aqueous solution. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 506, 703-710	5.1	27
21	Aqueous nickel sequestration and release during structural Fe(II) hydroxide remediation: the roles of coprecipitation, reduction and substitution. <i>RSC Advances</i> , 2016 , 6, 85347-85354	3.7	1
20	Novel iron metal matrix composite reinforced by quartz sand for the effective dechlorination of aqueous 2-chlorophenol. <i>Chemosphere</i> , 2016 , 146, 308-14	8.4	12
19	Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms. <i>Environmental Science & Environmental Science & </i>	10.3	395
18	Sequestration of chelated copper by structural Fe(II): Reductive decomplexation and transformation of Cu(II)-EDTA. <i>Journal of Hazardous Materials</i> , 2016 , 309, 116-25	12.8	24
17	Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition. <i>Chemical Engineering Journal</i> , 2016 , 294, 49-57	14.7	56

16	Magnetic pyrite cinder as an efficient heterogeneous ozonation catalyst and synergetic effect of deposited Ce. <i>Chemosphere</i> , 2016 , 155, 127-134	8.4	22
15	Continuous Bulk FeCuC Aerogel with Ultradispersed Metal Nanoparticles: An Efficient 3D Heterogeneous Electro-Fenton Cathode over a Wide Range of pH 3-9. <i>Environmental Science & Technology</i> , 2016 , 50, 5225-33	10.3	140
14	Red mud powders as low-cost and efficient catalysts for persulfate activation: Pathways and reusability of mineralizing sulfadiazine. <i>Separation and Purification Technology</i> , 2016 , 167, 136-145	8.3	48
13	Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. <i>Chemical Engineering Journal</i> , 2015 , 280, 514-524	14.7	185
12	Denitrification of nitrite by ferrous hydroxy complex: Effects on nitrous oxide and ammonium formation. <i>Chemical Engineering Journal</i> , 2015 , 279, 149-155	14.7	20
11	Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions. <i>Separation and Purification Technology</i> , 2015 , 154, 60-67	8.3	29
10	Effects of Cu2+, Ag+, and Pd2+ on the reductive debromination of 2,5-dibromoaniline by the ferrous hydroxy complex. <i>Environmental Technology (United Kingdom)</i> , 2015 , 36, 901-8	2.6	3
9	Pyrite-enhanced degradation of chloramphenicol by low concentrations of H2O2. <i>Water Science and Technology</i> , 2015 , 72, 180-6	2.2	3
8	Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions. <i>Microporous and Mesoporous Materials</i> , 2014 , 200, 235-244	5.3	74
7	Electrochemical reductive degradation of chlorobenzene using galvanically replaced Pd/Fe nanoscale particles. <i>Chemical Engineering Journal</i> , 2014 , 241, 376-383	14.7	21
6	Pyrite cinder as a cost-effective heterogeneous catalyst in heterogeneous Fenton reaction: decomposition of H(2)O(2) and degradation of Acid Red B. <i>Water Science and Technology</i> , 2014 , 70, 154	8 2 54	2
5	Oxidation of Azo Dyes by H2O2 in Presence of Natural Pyrite. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	26
4	Electrochemical study of nitrobenzene reduction on galvanically replaced nanoscale Fe/Au particles. <i>Journal of Hazardous Materials</i> , 2011 , 197, 424-9	12.8	28
3	Effect of struvite seed crystal on MAP crystallization. <i>Journal of Chemical Technology and Biotechnology</i> , 2011 , 86, 1394-1398	3.5	24
2	Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 434-440	21.8	82
1	Electrochemical reductive dechlorination of carbon tetrachloride on nanostructured Pd thin films. <i>Electrochemistry Communications</i> , 2008 , 10, 1474-1477	5.1	18