
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6493990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global carbon dioxide emissions from inland waters. Nature, 2013, 503, 355-359.	27.8	1,670
2	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	9.9	1,199
3	The changing carbon cycle of the coastal ocean. Nature, 2013, 504, 61-70.	27.8	1,146
4	Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 2013, 6, 597-607.	12.9	937
5	Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 2011, 9, 53-60.	4.0	927
6	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	27.8	814
7	Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience, 2011, 4, 839-842.	12.9	603
8	Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 2016, 9, 222-226.	12.9	565
9	Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas. Estuaries and Coasts, 2012, 35, 369-382.	2.2	528
10	Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature, 2001, 409, 497-500.	27.8	523
11	Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 2016, 6, 751-758.	18.8	491
12	Gas Exchange in Rivers and Estuaries: Choosing a Gas Transfer Velocity. Estuaries and Coasts, 2001, 24, 312.	1.7	479
13	Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature, 2008, 451, 449-452.	27.8	476
14	Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology & Oceanography Fluids & Environments, 2012, 2, 41-53.	1.7	444
15	The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 2013, 11, 474-482.	4.0	433
16	Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochemical Cycles, 2007, 21, .	4.9	413
17	Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulseâ€shunt concept. Ecology, 2016, 97, 5-16.	3.2	401
18	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	12.9	388

#	Article	IF	CITATIONS
19	Use of 14 C and 13 C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemistry, 2001, 32, 469-485.	1.8	381
20	Event controlled DOC export from forested watersheds. Biogeochemistry, 2010, 100, 197-209.	3.5	376
21	Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 2018, 3, 132-142.	3.9	368
22	A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophysical Research Letters, 2005, 32, .	4.0	334
23	ZEBRA MUSSEL INVASION IN A LARGE, TURBID RIVER: PHYTOPLANKTON RESPONSE TO INCREASED GRAZING. Ecology, 1997, 78, 588-602.	3.2	322
24	Increase in the Export of Alkalinity from North America's Largest River. Science, 2003, 301, 88-91.	12.6	310
25	Organic carbon burial in global lakes and reservoirs. Nature Communications, 2017, 8, 1694.	12.8	307
26	Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophysical Research Letters, 2008, 35, .	4.0	290
27	Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophysical Research Letters, 2007, 34, .	4.0	253
28	Atmospheric CO ₂ evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography, 2000, 45, 1707-1717.	3.1	241
29	Carbon Dioxide Concentration and Atmospheric Flux in the Hudson River. Estuaries and Coasts, 1997, 20, 381.	1.7	240
30	Dissolved organic matter sources in large Arctic rivers. Geochimica Et Cosmochimica Acta, 2012, 94, 217-237.	3.9	207
31	Flowâ€weighted values of runoff tracers (<i>δ</i> ¹⁸ 0, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophysical Research Letters, 2008, 35, .	4.0	206
32	Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nature Geoscience, 2012, 5, 198-201.	12.9	199
33	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5.2	199
34	Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005. Water Resources Research, 2007, 43, .	4.2	197
35	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	3.3	189
36	Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau. Geochimica Et Cosmochimica Acta, 2014, 142, 64-74.	3.9	186

#	Article	IF	CITATIONS
37	Bacterial consumption of DOC during transport through a temperate estuary. Aquatic Microbial Ecology, 2000, 22, 1-12.	1.8	181
38	Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Marine Chemistry, 2004, 92, 353-366.	2.3	180
39	Animating the Carbon Cycle. Ecosystems, 2014, 17, 344-359.	3.4	168
40	DOC cycling in a temperate estuary: A mass balance approach using natural ¹⁴ C and ¹³ C isotopes. Limnology and Oceanography, 2001, 46, 655-667.	3.1	164
41	A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences, 2014, 11, 381-407.	3.3	162
42	Increased mobilization of aged carbon to rivers by human disturbance. Nature Geoscience, 2015, 8, 112-116.	12.9	159
43	Particulate organic carbon and nitrogen export from major Arctic rivers. Clobal Biogeochemical Cycles, 2016, 30, 629-643.	4.9	157
44	The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 2009, 266, 318-327.	3.3	143
45	The impact of flooding on aquatic ecosystem services. Biogeochemistry, 2018, 141, 439-461.	3.5	142
46	Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries and Coasts, 2003, 26, 1401-1415.	1.7	141
47	Generality of Hydrologic Transport Limitation of Watershed Organic Carbon Flux Across Ecoregions of the United States. Geophysical Research Letters, 2018, 45, 11,702.	4.0	141
48	Circumpolar synchrony in big river bacterioplankton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21208-21212.	7.1	136
49	Twelve testable hypotheses on the geobiology of weathering. Geobiology, 2011, 9, 140-165.	2.4	133
50	Inputs of Fossil Carbon from Wastewater Treatment Plants to U.S. Rivers and Oceans. Environmental Science & Technology, 2009, 43, 5647-5651.	10.0	125
51	Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	122
52	A landâ€ŧoâ€ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles, 2012, 26, .	4.9	121
53	Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10280-10285.	7.1	118
54	Millennialâ€ e ged organic carbon subsidies to a modern river food web. Ecology, 2010, 91, 2385-2393.	3.2	114

#	Article	IF	CITATIONS
55	Dissolved organic matter export from a forested watershed during Hurricane Irene. Geophysical Research Letters, 2012, 39, .	4.0	110
56	Contribution of agricultural liming to riverine bicarbonate export and CO2sequestration in the Ohio River basin. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	108
57	Rivers as the largest source of mercury to coastal oceans worldwide. Nature Geoscience, 2021, 14, 672-677.	12.9	107
58	Lateral Marsh Edge Erosion as a Source of Sediments for Vertical Marsh Accretion. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2444-2465.	3.0	104
59	Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event. Geophysical Research Letters, 2013, 40, 116-122.	4.0	101
60	Hydrologic Drivers and Seasonality of Dissolved Organic Carbon Concentration, Nitrogen Content, Bioavailability, and Export in a Forested New England Stream. Ecosystems, 2013, 16, 604-616.	3.4	100
61	River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks. Biogeochemistry, 2018, 141, 503-521.	3.5	96
62	Riverine DOM. , 2015, , 509-533.		95
63	The carbon budget of South Asia. Biogeosciences, 2013, 10, 513-527.	3.3	94
64	Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth and Planetary Science Letters, 2009, 284, 50-56.	4.4	91
65	Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nature Geoscience, 2020, 13, 349-354.	12.9	85
66	Riverine Export of Aged Carbon Driven by Flow Path Depth and Residence Time. Environmental Science & Technology, 2018, 52, 1028-1035.	10.0	84
67	Ecosystem Modulation of Dissolved Carbon Age in a Temperate Marsh-Dominated Estuary. Ecosystems, 2003, 6, 694-705.	3.4	83
68	Landâ€use controls on sources and processing of nitrate in small watersheds: insights from dual isotopic analysis. Ecological Applications, 2010, 20, 1961-1978.	3.8	82
69	Landscapeâ€level controls on dissolved carbon flux from diverse catchments of the circumboreal. Global Biogeochemical Cycles, 2012, 26, .	4.9	82
70	Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes, 2013, 2, .	3.9	82
71	A New High-Resolution N ₂ O Emission Inventory for China in 2008. Environmental Science & Technology, 2014, 48, 8538-8547.	10.0	82
72	Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnology and Oceanography, 2015, 60, 1118-1128.	3.1	79

#	Article	IF	CITATIONS
73	Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnology and Oceanography Letters, 2018, 3, 143-155.	3.9	75
74	Development of a Panâ€Arctic Database for River Chemistry. Eos, 2008, 89, 217-218.	0.1	72
75	Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. Global Biogeochemical Cycles, 2014, 28, 525-537.	4.9	70
76	Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. National Science Review, 2021, 8, nwaa145.	9.5	70
77	An empirical study of climatic controls on riverine C export from three major U.S. watersheds. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	68
78	The composition and transport of organic carbon in rainfall: Insights from the natural (13C and14C) isotopes of carbon. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	64
79	Relationships between Δ ¹⁴ C and the molecular quality of dissolved organic carbon in rivers draining to the coast from the conterminous United States. Global Biogeochemical Cycles, 2012, 26, .	4.9	64
80	Estimating nitrogen and phosphorus concentrations in streams and rivers, within a machine learning framework. Scientific Data, 2020, 7, 161.	5.3	64
81	Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S Biogeochemistry, 2008, 90, 15-27.	3.5	62
82	Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system. Geochimica Et Cosmochimica Acta, 2007, 71, 4233-4250.	3.9	61
83	Regional trends and drivers of the global methane budget. Global Change Biology, 2022, 28, 182-200.	9.5	56
84	Molecular Hysteresis: Hydrologically Driven Changes in Riverine Dissolved Organic Matter Chemistry During a Storm Event. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 759-774.	3.0	55
85	The European land and inland water CO ₂ , CO, CH ₄ and N ₂ O balance between 2001 and 2005. Biogeosciences, 2012, 9, 3357-3380.	3.3	53
86	Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology, 2014, 95, 2622-2632.	3.2	53
87	The impact of fertilization and hydrology on nitrate fluxes from Mississippi watersheds. Current Opinion in Environmental Sustainability, 2012, 4, 212-218.	6.3	52
88	Influence of watershed limate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1110-1128.	3.0	51
89	Greenhouse gases emissions in rivers of the Tibetan Plateau. Scientific Reports, 2017, 7, 16573.	3.3	50
90	The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106322119.	7.1	48

#	Article	IF	CITATIONS
91	What controls the spatial patterns of the riverine carbonate system? — A case study for North America. Chemical Geology, 2013, 337-338, 114-127.	3.3	47
92	Global riverine nitrous oxide emissions: The role of small streams and large rivers. Science of the Total Environment, 2021, 776, 145148.	8.0	45
93	New model for capturing the variations of fertilizerâ€induced emission factors of N ₂ O. Global Biogeochemical Cycles, 2015, 29, 885-897.	4.9	42
94	Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources. Environmental Research Letters, 2014, 9, 055005.	5.2	41
95	Lakes on the Tibetan Plateau as Conduits of Greenhouse Gases to the Atmosphere. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2091-2103.	3.0	41
96	Natural Lakes Are a Minor Global Source of N ₂ O to the Atmosphere. Global Biogeochemical Cycles, 2019, 33, 1564-1581.	4.9	40
97	Simulating streamflow and dissolved organic matter export from a forested watershed. Water Resources Research, 2012, 48, .	4.2	36
98	Immobilization of relic anthropogenic dissolved organic matter from alpine rivers in the Himalayan-Tibetan Plateau in winter. Water Research, 2019, 160, 97-106.	11.3	36
99	Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw: A Synthesis of ¹⁴ C Measurements From the Northern Permafrost Region. Clobal Biogeochemical Cycles, 2020, 34, e2020GB006672.	4.9	36
100	Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2155-2170.	3.0	35
101	Land Use, Not Stream Order, Controls N ₂ O Concentration and Flux in the Upper Mara River Basin, Kenya. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3491-3506.	3.0	35
102	Seasonal response of air–water CO ₂ exchange along the land–ocean aquatic continuum of the northeast North American coast Biogeosciences, 2015, 12, 1447-1458.	3.3	34
103	Spatial Variation in the Origin of Dissolved Organic Carbon in Snow on the Juneau Icefield, Southeast Alaska. Environmental Science & Technology, 2015, 49, 11492-11499.	10.0	34
104	Hydrologic controls on <i>pCO₂</i> and CO ₂ efflux in US streams and rivers. Limnology and Oceanography Letters, 2018, 3, 428-435.	3.9	34
105	Fossil Fuel Combustion Emission From South Asia Influences Precipitation Dissolved Organic Carbon Reaching the Remote Tibetan Plateau: Isotopic and Molecular Evidence. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6248-6258.	3.3	34
106	Enhancement of primary production during drought in a temperate watershed is greater in larger rivers than headwater streams. Limnology and Oceanography, 2019, 64, 1458-1472.	3.1	34
107	Temperature versus hydrologic controls of chemical weathering fluxes from United States forests. Chemical Geology, 2017, 458, 1-13.	3.3	33
108	Differential Response of Greenhouse Gas Evasion to Storms in Forested and Wetland Streams. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 649-662.	3.0	33

#	Article	IF	CITATIONS
109	An Abrupt Aging of Dissolved Organic Carbon in Large Arctic Rivers. Geophysical Research Letters, 2020, 47, e2020GL088823.	4.0	33
110	Quantity, 14C age and lability of desorbed soil organic carbon in fresh water and seawater. Organic Geochemistry, 2007, 38, 1547-1557.	1.8	32
111	Panâ€Arctic Riverine Dissolved Organic Matter: Synchronous Molecular Stability, Shifting Sources and Subsidies. Global Biogeochemical Cycles, 2021, 35, e2020GB006871.	4.9	31
112	Source Switching Maintains Dissolved Organic Matter Chemostasis Across Discharge Levels in a Large Temperate River Network. Ecosystems, 2021, 24, 227-247.	3.4	30
113	Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS ONE, 2017, 12, e0178166.	2.5	29
114	Deposition of Organic and Black Carbon: Direct Measurements at Three Remote Stations in the Himalayas and Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9702-9715.	3.3	29
115	Evaluating <scp>CO₂</scp> calculation error from organic alkalinity and <scp>pH</scp> measurement error in low ionic strength freshwaters. Limnology and Oceanography: Methods, 2020, 18, 606-622.	2.0	29
116	Multiple-source heterotrophy fueled by aged organic carbon in an urbanized estuary. Marine Chemistry, 2011, 124, 14-22.	2.3	28
117	Watershed Glacier Coverage Influences Dissolved Organic Matter Biogeochemistry in Coastal Watersheds of Southeast Alaska. Ecosystems, 2014, 17, 1014-1025.	3.4	27
118	Increases in humic and bioavailable dissolved organic matter in a forested New England headwater stream with increasing discharge. Marine and Freshwater Research, 2016, 67, 1279.	1.3	26
119	Association Between Sporadic Legionellosis and River Systems in Connecticut. Journal of Infectious Diseases, 2018, 217, 179-187.	4.0	25
120	Gas transfer velocities in small forested ponds. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1011-1021.	3.0	22
121	Warming and monsoonal climate lead to large export of millennial-aged carbon from permafrost catchments of the Qinghai-Tibet Plateau. Environmental Research Letters, 2020, 15, 074012.	5.2	21
122	Spatiotemporal Variability and Sources of DIC in Permafrost Catchments of the Yangtze River Source Region: Insights From Stable Carbon Isotope and Water Chemistry. Water Resources Research, 2020, 56, e2019WR025343.	4.2	20
123	Substantial overnight reaeration by convective cooling discovered in pond ecosystems. Geophysical Research Letters, 2016, 43, 8044-8051.	4.0	19
124	Watershed hydrology and dissolved organic matter export across time scales: minute to millennium. Freshwater Science, 2015, 34, 392-398.	1.8	18
125	Estimates of New and Total Productivity in Central Long Island Sound from In Situ Measurements of Nitrate and Dissolved Oxygen. Estuaries and Coasts, 2013, 36, 74-97.	2.2	16
126	High Frequency Data Exposes Nonlinear Seasonal Controls on Dissolved Organic Matter in a Large Watershed. Environmental Science & Technology, 2018, 52, 5644-5652.	10.0	15

#	Article	IF	CITATIONS
127	Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
128	Highest rates of gross primary productivity maintained despite <scp>CO₂</scp> depletion in a temperate river network. Limnology and Oceanography Letters, 2021, 6, 200-206.	3.9	14
129	Patterns in stream greenhouse gas dynamics from mountains to plains in northcentral Wyoming. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2173-2190.	3.0	13
130	Multidecadal climateâ€induced changes in Arctic tundra lake geochemistry and geomorphology. Limnology and Oceanography, 2019, 64, S179.	3.1	12
131	The evolution of stream dissolved organic matter composition following glacier retreat in coastal watersheds of southeast Alaska. Biogeochemistry, 2023, 164, 99-116.	3.5	12
132	The age of the Amazon's breath. Nature, 2005, 436, 469-470.	27.8	11
133	River network travel time is correlated with dissolved organic matter composition in rivers of the contiguous United States. Hydrological Processes, 2021, 35, e14124.	2.6	11
134	Does Photomineralization of Dissolved Organics Matter in Temperate Rivers?. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006402.	3.0	11
135	Lake Morphometry and River Network Controls on Evasion of Terrestrially Sourced Headwater CO 2. Geophysical Research Letters, 2021, 48, .	4.0	11
136	Global Controls on DOC Reaction Versus Export in Watersheds: A Damköhler Number Analysis. Global Biogeochemical Cycles, 2022, 36, .	4.9	11
137	Generalized Growth of Estuarine, Household and Clinical Isolates of Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 305.	3.5	10
138	Distinct concentrationâ€discharge dynamics in temperate streams and rivers: <scp>CO₂</scp> exhibits chemostasis while <scp>CH₄</scp> exhibits source limitation due to temperature control. Limnology and Oceanography, 2021, 66, 3656-3668.	3.1	10
139	The experimental flow to the Colorado River delta: Effects on carbon mobilization in a dry watercourse. Journal of Geophysical Research C: Biogeosciences, 2017, 122, 607-627.	3.0	9
140	Groundwater as a limited carbon dioxide source in a large river (the Yangtze River). Science of the Total Environment, 2021, 760, 143336.	8.0	8
141	Evaluating Streamwater Dissolved Organic Carbon Dynamics in Context of Variable Flowpath Contributions With a Tracerâ€Based Mixing Model. Water Resources Research, 2021, 57, e2021WR030529.	4.2	8
142	Air-Water Flux Reconciliation Between the Atmospheric CO2 Profile and Mass Balance Techniques. Environmental Science and Engineering, 2007, , 181-192.	0.2	7
143	Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottomâ€Up and Topâ€Down Approaches: Informing Future Research and National Inventories. Geophysical Research Letters, 2021, 48, e2021GL095264.	4.0	7
144	Loads and ages of carbon from the five largest rivers in South Korea under Asian monsoon climates. Journal of Hydrology, 2021, 599, 126363.	5.4	6

#	Article	IF	CITATIONS
145	Radiocarbon age of different photoreactive fractions of freshwater dissolved organic matter. Organic Geochemistry, 2019, 135, 11-15.	1.8	5
146	An intense precipitation event causes a temperate forested drainage network to shift from <scp>N₂O</scp> source to sink. Limnology and Oceanography, 2022, 67, .	3.1	5
147	Export of photolabile and photoprimable dissolved organic carbon from the Connecticut River. Aquatic Sciences, 2021, 83, 1.	1.5	4
148	Consistent results in stream hydrology across multiple watersheds: A reply to Chew and Goh. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 812-817.	3.0	3
149	Geoscientists, Who Have Documented the Rapid and Accelerating Climate Crisis for Decades, Are Now Pleading for Immediate Collective Action. Geophysical Research Letters, 2021, 48, e2021GL096644.	4.0	3
150	Contributions of Fe(III) to UV–Vis absorbance in river water: a case study on the Connecticut River and argument for the systematic tandem measurement of Fe(III) and CDOM. Biogeochemistry, 2022, 160, 17-33.	3.5	3
151	Fluxes, processing, and fate of riverine organic and inorganic carbon in the Arctic Ocean. , 2013, , 530-553.		1
152	Reply to Rucinski et al. Journal of Infectious Diseases, 2018, 218, 670-671.	4.0	0
153	Thank You to Our 2019 Reviewers. Global Biogeochemical Cycles, 2020, 34, e2020GB006628.	4.9	0
154	Thank You to Our 2020 Reviewers. Global Biogeochemical Cycles, 2021, 35, e2021GB006998.	4.9	0
155	State of science in carbon budget assessments for temperate forests and grasslands. , 2022, , 237-270.		0