
Lies Langouche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6493947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced Cortisol Metabolism during Critical Illness. New England Journal of Medicine, 2013, 368, 1477-1488.	13.9	468
2	Intensive insulin therapy protects the endothelium of critically ill patients. Journal of Clinical Investigation, 2005, 115, 2277-2286.	3.9	405
3	Thyroid function in critically ill patients. Lancet Diabetes and Endocrinology,the, 2015, 3, 816-825.	5.5	284
4	Survival Benefits of Intensive Insulin Therapy in Critical Illness: Impact of Maintaining Normoglycemia Versus Glycemia-Independent Actions of Insulin. Diabetes, 2006, 55, 1096-1105.	0.3	250
5	Tight Blood Glucose Control With Insulin in the ICU. Chest, 2007, 132, 268-278.	0.4	206
6	Effect of Intensive Insulin Therapy on Insulin Sensitivity in the Critically III. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3890-3897.	1.8	130
7	Polymorphisms in innate immunity genes predispose to bacteremia and death in the medical intensive care unit*. Critical Care Medicine, 2009, 37, 192-e3.	0.4	130
8	Impact of Early Parenteral Nutrition on Muscle and Adipose Tissue Compartments During Critical Illness*. Critical Care Medicine, 2013, 41, 2298-2309.	0.4	123
9	Endocrine aspects of acute and prolonged critical illness. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 20-31.	2.9	112
10	Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Medicine, 2016, 42, 16-27.	3.9	98
11	Glycemic and nonglycemic effects of insulin: how do they contribute to a better outcome of critical illness?. Current Opinion in Critical Care, 2005, 11, 304-311.	1.6	97
12	The Type II Iodothyronine Deiodinase Is Up-Regulated in Skeletal Muscle during Prolonged Critical Illness. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3330-3333.	1.8	95
13	Endocrine, Metabolic, and Morphologic Alterations of Adipose Tissue During Critical Illness*. Critical Care Medicine, 2013, 41, 317-325.	0.4	93
14	Adrenal function and dysfunction in critically ill patients. Nature Reviews Endocrinology, 2019, 15, 417-427.	4.3	91
15	Critical illness evokes elevated circulating bile acids related to altered hepatic transporter and nuclear receptor expression. Hepatology, 2011, 54, 1741-1752.	3.6	86
16	Expression of thyroid hormone transporters during critical illness. European Journal of Endocrinology, 2009, 161, 243-250.	1.9	85
17	Impact of Early Nutrient Restriction During Critical Illness on the Nonthyroidal Illness Syndrome and Its Relation With Outcome: A Randomized, Controlled Clinical Study. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1006-1013.	1.8	74
18	Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Critical Care, 2009, 13, R147.	2.5	73

#	Article	IF	CITATIONS
19	Glucose Metabolism and Insulin Therapy. Critical Care Clinics, 2006, 22, 119-129.	1.0	72
20	Tight blood glucose control: What is the evidence?. Critical Care Medicine, 2007, 35, S496-S502.	0.4	67
21	Adiponectin, retinol-binding protein 4, and leptin in protracted critical illness of pulmonary origin. Critical Care, 2009, 13, R112.	2.5	66
22	Impact of Duration of Critical Illness on the Adrenal Glands of Human Intensive Care Patients. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4214-4222.	1.8	65
23	Alterations in Adipose Tissue during Critical Illness. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 507-516.	2.5	60
24	Adipose tissue protects against sepsis-induced muscle weakness in mice: from lipolysis to ketones. Critical Care, 2019, 23, 236.	2.5	58
25	Premorbid obesity, but not nutrition, prevents critical illnessâ€induced muscle wasting and weakness. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 89-101.	2.9	55
26	Tight Glycemic Control Protects the Myocardium and Reduces Inflammation in Neonatal Heart Surgery. Annals of Thoracic Surgery, 2010, 90, 22-29.	0.7	53
27	Hepatic PPARα is critical in the metabolic adaptation to sepsis. Journal of Hepatology, 2019, 70, 963-973.	1.8	53
28	Therapy Insight: the effect of tight glycemic control in acute illness. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 270-278.	2.9	50
29	Role of Glucagon in Catabolism and Muscle Wasting of Critical Illness and Modulation by Nutrition. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1131-1143.	2.5	50
30	Glycemic Control Modulates Arginine and Asymmetrical-Dimethylarginine Levels during Critical Illness by Preserving Dimethylarginine-Dimethylaminohydrolase Activity. Endocrinology, 2008, 149, 3148-3157.	1.4	49
31	Circulating bile acids predict outcome in critically ill patients. Annals of Intensive Care, 2017, 7, 48.	2.2	49
32	Target Cells of Î ³ 3-Melanocyte-Stimulating Hormone Detected through Intracellular Ca2+ Responses in Immature Rat Pituitary Constitute a Fraction of All Main Pituitary Cell Types, but Mostly Express Multiple Hormone Phenotypes at the Messenger Ribonucleic Acid Level. Refractoriness to Melanocortin-3 Receptor Blockade in the Lacto-Somatotroph Lineage1. Endocrinology, 1999, 140,	1.4	48
33	4874-4885. Adrenocortical function during prolonged critical illness and beyond: a prospective observational study. Intensive Care Medicine, 2018, 44, 1720-1729.	3.9	48
34	Nonthyroidal Illness Syndrome Across the Ages. Journal of the Endocrine Society, 2019, 3, 2313-2325.	0.1	47
35	The Dynamic Neuroendocrine Response to Critical Illness. Endocrinology and Metabolism Clinics of North America, 2006, 35, 777-791.	1.2	45
36	Critical illness induces alternative activation of M2 macrophages in adipose tissue. Critical Care, 2011, 15, R245.	2.5	44

#	Article	IF	CITATIONS
37	The Hepatic Glucocorticoid Receptor Is Crucial for Cortisol Homeostasis and Sepsis Survival in Humans and Male Mice. Endocrinology, 2018, 159, 2790-2802.	1.4	43
38	The intensive care unit course and outcome in acute-on-chronic liver failure are comparable to other populations. Journal of Hepatology, 2018, 69, 803-809.	1.8	39
39	The HPA axis response to critical illness: New study results with diagnostic and therapeutic implications. Molecular and Cellular Endocrinology, 2015, 408, 235-240.	1.6	38
40	Cholestatic Alterations in the Critically III. Chest, 2018, 153, 733-743.	0.4	36
41	Anterior pituitary function in critical illness. Endocrine Connections, 2019, 8, R131-R143.	0.8	35
42	Modulation of regional nitric oxide metabolism: Blood glucose control or insulin?. Intensive Care Medicine, 2008, 34, 1525-1533.	3.9	28
43	Effect of insulin therapy on coagulation and fibrinolysis in medical intensive care patients*. Critical Care Medicine, 2008, 36, 1475-1480.	0.4	28
44	Withholding parenteral nutrition during critical illness increases plasma bilirubin but lowers the incidence of biliary sludge. Hepatology, 2014, 60, 202-210.	3.6	28
45	Adrenocortical Stress Response during the Course of Critical Illness. , 2017, 8, 283-298.		28
46	ACTH and cortisol responses to CRH in acute, subacute, and prolonged critical illness: a randomized, double-blind, placebo-controlled, crossover cohort study. Intensive Care Medicine, 2018, 44, 2048-2058.	3.9	28
47	Effect of withholding early parenteral nutrition in PICU on ketogenesis as potential mediator of its outcome benefit. Critical Care, 2020, 24, 536.	2.5	28
48	Circulating 3-T1AM and 3,5-T2 in Critically III Patients: A Cross-Sectional Observational Study. Thyroid, 2016, 26, 1674-1680.	2.4	27
49	Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) on cAMP Formation and Growth Hormone Release from Chicken Anterior Pituitary Cellsa. Annals of the New York Academy of Sciences, 1998, 865, 471-474.	1.8	26
50	Molecular mechanisms behind clinical benefits of intensive insulin therapy during critical illness: Glucose versus insulin. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2009, 23, 449-459.	1.7	26
51	Drug-induced HPA axis alterations during acute critical illness: a multivariable association study. Clinical Endocrinology, 2017, 86, 26-36.	1.2	26
52	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, 2021, 7, .	4.7	26
53	Non-Thyroidal Illness Syndrome in Critically Ill Children: Prognostic Value and Impact of Nutritional Management. Thyroid, 2019, 29, 480-492.	2.4	25
54	Effect of Tight Glucose Control with Insulin on the Thyroid Axis of Critically Ill Children and Its Relation with Outcome. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3569-3576.	1.8	24

#	Article	IF	CITATIONS
55	Indication and practical use of intensive insulin therapy in the critically ill. Current Opinion in Critical Care, 2007, 13, 392-398.	1.6	20
56	Intensive Insulin Therapy in The Intensive Care Unit: Update on Clinical Impact and Mechanisms of Action. Endocrine Practice, 2006, 12, 14-21.	1.1	19
57	Contribution of Nutritional Deficit to the Pathogenesis of the Nonthyroidal Illness Syndrome in Critical Illness: A Rabbit Model Study. Endocrinology, 2012, 153, 973-984.	1.4	19
58	Critical illness induces nutrient-independent adipogenesis and accumulation of alternatively activated tissue macrophages. Critical Care, 2013, 17, R193.	2.5	18
59	On the Role of Illness Duration and Nutrient Restriction in Cholestatic Alterations that Occur During Critical Illness. Shock, 2018, 50, 187-198.	1.0	18
60	Neuropathological Correlates of Hyperglycemia During Prolonged Polymicrobial Sepsis in Mice. Shock, 2015, 44, 245-251.	1.0	17
61	The placenta in fetal thyroid hormone delivery: from normal physiology to adaptive mechanisms in complicated pregnancies. Journal of Maternal-Fetal and Neonatal Medicine, 2020, 33, 3857-3866.	0.7	17
62	Stimulation of Intracellular Free Calcium in GH3 Cells byÎ ³ 3-Melanocyte-Stimulating Hormone. Involvement of a Novel Melanocortin Receptor?. Endocrinology, 2001, 142, 257-266.	1.4	16
63	Impact of Parenteral Nutrition Versus Fasting on Hepatic Bile Acid Production and Transport in a Rabbit Model of Prolonged Critical Illness. Shock, 2014, 41, 48-54.	1.0	16
64	The role of pro-opiomelanocortin in the ACTH–cortisol dissociation of sepsis. Critical Care, 2021, 25, 65.	2.5	16
65	Use of a Central Venous Line for Fluids, Drugs and Nutrient Administration in a Mouse Model of Critical Illness. Journal of Visualized Experiments, 2017, , .	0.2	15
66	Obesity attenuates inflammation, protein catabolism, dyslipidaemia, and muscle weakness during sepsis, independent of leptin. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 418-433.	2.9	15
67	Structure–activity relationship and signal transduction of γ-MSH peptides in GH3 cells: further evidence for a new melanocortin receptor. Peptides, 2002, 23, 1077-1086.	1.2	14
68	Hypothalamic–pituitary hormones during critical illness. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 124, 115-126.	1.0	14
69	Evolution of circulating thyroid hormone levels in preterm infants during the first week of life: perinatal influences and impact on neurodevelopment. Journal of Pediatric Endocrinology and Metabolism, 2019, 32, 597-606.	0.4	14
70	Review shows that thyroid hormone substitution could benefit transient hypothyroxinaemia of prematurity but treatment strategies need to be clarified. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 792-805.	0.7	14
71	The Role of Insulin Therapy in Critically III Patients. Treatments in Endocrinology: Guiding Your Management of Endocrine Disorders, 2005, 4, 353-360.	1.8	13
72	Liver X receptor activation enhances CVB3 viral replication during myocarditis by stimulating lipogenesis. Cardiovascular Research, 2015, 107, 78-88.	1.8	13

#	Article	IF	CITATIONS
73	Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies. EBioMedicine, 2022, 80, 104057.	2.7	12
74	Melanocortin Peptides Stimulate Prolactin Gene Expression and Prolactin Accumulation in Rat Pituitary Aggregate Cell Cultures. Journal of Neuroendocrinology, 2004, 16, 695-703.	1.2	11
75	MOLECULAR ANALYSIS OF SEPSIS-INDUCED CHANGES IN THE LIVER. Shock, 2010, 34, 427-436.	1.0	11
76	Impact of withholding early parenteral nutrition in adult critically ill patients on ketogenesis in relation to outcome. Critical Care, 2021, 25, 102.	2.5	11
77	Hyperglycemia and insulin resistance in COVID-19 versus non-COVID critical illness: Are they really different?. Critical Care, 2021, 25, 437.	2.5	11
78	Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 443-455.	2.9	10
79	Role of ketones, ketogenic diets and intermittent fasting in ICU. Current Opinion in Critical Care, 2021, 27, 385-389.	1.6	10
80	Prevalence and Prognostic Value of Abnormal Liver Test Results in Critically III Children and the Impact of Delaying Parenteral Nutrition*. Pediatric Critical Care Medicine, 2018, 19, 1120-1129.	0.2	9
81	Altered cholesterol homeostasis in critical illness-induced muscle weakness: effect of exogenous 3-hydroxybutyrate. Critical Care, 2021, 25, 252.	2.5	9
82	Stimulation of Intracellular Free Calcium in GH3 Cells byl̂ ³ 3-Melanocyte-Stimulating Hormone. Involvement of a Novel Melanocortin Receptor?. , 0, .		9
83	Anterior Pituitary Morphology and Hormone Production During Sustained Critical Illness in a Rabbit Model. Hormone and Metabolic Research, 2013, 45, 277-282.	0.7	8
84	Impact of Hydrocortisone and of CRH Infusion on the Hypothalamus-Pituitary-Adrenocortical Axis of Septic Male Mice. Endocrinology, 2022, 163, .	1.4	8
85	C-reactive protein rise in response to macronutrient deficit early in critical illness: sign of inflammation or mediator of infection prevention and recovery. Intensive Care Medicine, 2022, 48, 25-35.	3.9	8
86	Proliferation and differentiation of adipose tissue in prolonged lean and obese critically ill patients. Intensive Care Medicine Experimental, 2017, 5, 16.	0.9	6
87	Efficacy and safety of ketone ester infusion to prevent muscle weakness in a mouse model of sepsis-induced critical illness. Scientific Reports, 2022, 12, .	1.6	6
88	Effect of Early Parenteral Nutrition on the HPA Axis and on Treatment With Corticosteroids in Intensive Care Patients. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2613-2620.	1.8	5
89	Maternal and placental responses before preterm birth: adaptations to increase fetal thyroid hormone availability?. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 2746-2757.	0.7	5
90	Novel insights in endocrine and metabolic pathways in sepsis and gaps for future research. Clinical Science, 2022, 136, 861-878.	1.8	5

#	Article	IF	CITATIONS
91	Identification of the toxic threshold of 3-hydroxybutyrate-sodium supplementation in septic mice. BMC Pharmacology & Toxicology, 2021, 22, 50.	1.0	4
92	Impact of tight glucose control on circulating 3-hydroxybutyrate in critically ill patients. Critical Care, 2021, 25, 373.	2.5	4
93	Endocrine interventions in the intensive care unit. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 182, 417-431.	1.0	3
94	Endocrine and metabolic disturbances in critical illness: relation to mechanisms of organ dysfunction and adverse outcome. Verhandelingen - Koninklijke Academie Voor Geneeskunde Van België, 2010, 72, 149-63.	0.2	3
95	Glycaemic control in trauma patients, is there a role?. Trauma, 2006, 8, 13-19.	0.2	2
96	Modulating the Endocrine Response in Sepsis: Insulin and Blood Glucose Control. Novartis Foundation Symposium, 0, , 204-222.	1.2	2
97	Modulating the endocrine response in sepsis: insulin and blood glucose control. Novartis Foundation Symposium, 2007, 280, 204-15; discussion 215-22.	1.2	2
98	RÃ1e deÂl'insuline etÂduÂcontrÃ1e deÂlaÂglycémie enÂréanimation. Reanimation: Journal De La Societe De Reanimation De Langue Francaise, 2006, 15, 474-480.	0.1	1
99	Thyroidal Changes During Critical Illness. , 2016, , 125-136.		1
100	Time Course of Cholestatic Alterations in Septic and Surgical Critical Illnesses. Journal of Hepatology, 2016, 64, S633.	1.8	1
101	Reply to: "Outcome of critically ill cirrhotic patients admitted to the ICU: The role of ACLF― Journal of Hepatology, 2019, 70, 804-805.	1.8	1
102	Nutrition Status and Length of Hospital Stay. , 2015, , 279-291.		1
103	The Dynamic Neuroendocrine Response to Critical Illness. , 2008, , 167-180.		1
104	OR19-06 Sepsis-Induced Critical Illness in Mice Alters Key Regulators of ACTH Production and Secretion Within the Anterior Pituitary Gland. Journal of the Endocrine Society, 2020, 4, .	0.1	1
105	The Role of Insulin and Blood Glucose Control. Update in Intensive Care and Emergency Medicine, 2007, , 287-297.	0.6	0
106	992 IMPACT OF INTRAVENOUS GLUCOSE LOAD ON BILE SALT TRANSPORTERS IN CRITICALLY ILL RABBITS. Journal of Hepatology, 2010, 52, S383.	1.8	0
107	Reduced cortisol metabolism drives hypercortisolism in critical illness. Critical Care, 2012, 16, .	2.5	0
108	Critical illness induces nutrient-independent adipogenesis and accumulation of alternatively activated tissue macrophages. Critical Care, 2013, 17, .	2.5	0

#	Article	IF	CITATIONS
109	The authors reply. Critical Care Medicine, 2014, 42, e385-e386.	0.4	Ο
110	Monocytes exhibit an immune and metabolic reprogramming during acute-on-chronic-liver-failure. Journal of Hepatology, 2017, 66, S100.	1.8	0
111	The outcome of acute-on-chronic liver failure in the intensive care is similar to a propensity matched ICU population without liver disease. Journal of Hepatology, 2018, 68, S239.	1.8	0
112	Changes Within the Thyroid Axis During the Course of Critical Illness. , 2008, , 199-213.		0
113	Increased Storage Capacity of Adipose Tissue during Critical Illness , 2010, , P2-480-P2-480.		0
114	Adipose Tissue and Endocrine Function in Critical Care. , 2014, , 1-14.		0
115	Adipose Tissue and Endocrine Function in Critical Care. , 2015, , 119-129.		Ο
116	SAT-155 Temporal Activation of the Unfolded Protein Response and Concomitant Downregulation of Key Hepatic Transcription Factors in Critical Illness. Journal of the Endocrine Society, 2019, 3, .	0.1	0
117	OR20-6 Ketones and Sepsis-Induced Muscle Weakness: Signal or Fuel for Protection?. Journal of the Endocrine Society, 2019, 3, .	0.1	0