
Kangning Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6493500/publications.pdf Version: 2024-02-01

KANCNING REN

#	Article	IF	CITATIONS
1	Materials for Microfluidic Chip Fabrication. Accounts of Chemical Research, 2013, 46, 2396-2406.	7.6	664
2	Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Science Advances, 2020, 6, eaax5785.	4.7	185
3	Whole-Teflon microfluidic chips. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8162-8166.	3.3	184
4	Chemical Recognition in Cell-Imprinted Polymers. ACS Nano, 2012, 6, 4314-4318.	7.3	107
5	New materials for microfluidics in biology. Current Opinion in Biotechnology, 2014, 25, 78-85.	3.3	98
6	LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004376.	2.1	82
7	Recent Developments in Microfluidics for Cell Studies. Advanced Materials, 2014, 26, 5525-5532.	11.1	82
8	Convenient Method for Modifying Poly(dimethylsiloxane) with Poly(ethylene glycol) in Microfluidics. Analytical Chemistry, 2009, 81, 6627-6632.	3.2	69
9	Convenient Method for Modifying Poly(dimethylsiloxane) To Be Airtight and Resistive against Absorption of Small Molecules. Analytical Chemistry, 2010, 82, 5965-5971.	3.2	62
10	Sorting Inactivated Cells Using Cell-Imprinted Polymer Thin Films. ACS Nano, 2013, 7, 6031-6036.	7.3	60
11	Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test. Lab on A Chip, 2019, 19, 2915-2924.	3.1	56
12	A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution. Biosensors and Bioelectronics, 2018, 99, 361-367.	5.3	49
13	Facile fabrication of superhydrophobic zinc coatings with corrosion resistance <i>via</i> an electrodeposition process. New Journal of Chemistry, 2020, 44, 8890-8901.	1.4	46
14	Surface-imprinted polymers in microfluidic devices. Science China Chemistry, 2012, 55, 469-483.	4.2	43
15	A facile method to prepare stearic acid-TiO2/zinc composite coating with multipronged robustness, self-cleaning property, and corrosion resistance. Journal of Alloys and Compounds, 2021, 882, 160636.	2.8	36
16	Crack engineering for the construction of arbitrary hierarchical architectures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23909-23914.	3.3	34
17	Microfluidic technologies for vasculature biomimicry. Analyst, The, 2019, 144, 4461-4471.	1.7	34
18	Microfluidics for Combating Antimicrobial Resistance. Trends in Biotechnology, 2017, 35, 1129-1139.	4.9	33

KANGNING REN

#	Article	IF	CITATIONS
19	Cell-on-hydrogel platform made of agar and alginate for rapid, low-cost, multidimensional test of antimicrobial susceptibility. Lab on A Chip, 2016, 16, 3130-3138.	3.1	29
20	Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture. Lab on A Chip, 2011, 11, 2288.	3.1	26
21	A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips. Lab on A Chip, 2016, 16, 3909-3918.	3.1	25
22	A Multiplexed, Gradientâ€Based, Fullâ€Hydrogel Microfluidic Platform for Rapid, Highâ€Throughput Antimicrobial Susceptibility Testing. ChemPlusChem, 2017, 82, 792-801.	1.3	19
23	Recent progresses in microfabricating perfluorinated polymers (Teflons) and the associated new applications in microfluidics. Microphysiological Systems, 0, 1, 1-1.	2.0	16
24	Freestanding 3-D microvascular networks made of alginate hydrogel as a universal tool to create microchannels inside hydrogels. Biomicrofluidics, 2016, 10, 044112.	1.2	13
25	Low-cost replication of plasmonic gold nanomushroom arrays for transmission-mode and multichannel biosensing. RSC Advances, 2015, 5, 61270-61276.	1.7	11
26	The Application of Microfluidic Technologies in Aptamer Selection. Frontiers in Cell and Developmental Biology, 2021, 9, 730035.	1.8	11
27	Fabrication of recyclable, superhydrophobic-superoleophilic quartz sand by facile two-step modification for oil-water separation. Journal of Environmental Chemical Engineering, 2022, 10, 107019.	3.3	11
28	Biomimetic reusable microfluidic reactors with physically immobilized RuBisCO for glucose precursor production. Catalysis Science and Technology, 2022, 12, 5009-5020.	2.1	6
29	"Barcode―cell sensor microfluidic system: Rapid and sample-to-answer antimicrobial susceptibility testing applicable in resource-limited conditions. Biosensors and Bioelectronics, 2021, 192, 113516.	5.3	4
30	Convenient, Reliable, Biasâ€Free Dynamic Patterning of Multiple Types of Cells into Precisely Defined Micropatterns for Co ulture Study. ChemNanoMat, 2016, 2, 447-453.	1.5	2