
Wouter Botzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6493375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior. Risk Analysis, 2012, 32, 1481-1495.	2.7	778
2	Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 2014, 4, 264-268.	18.8	425
3	Evaluating Flood Resilience Strategies for Coastal Megacities. Science, 2014, 344, 473-475.	12.6	406
4	Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science and Policy, 2015, 47, 42-52.	4.9	393
5	Willingness of homeowners to mitigate climate risk through insurance. Ecological Economics, 2009, 68, 2265-2277.	5.7	332
6	Dependence of flood risk perceptions on socioeconomic and objective risk factors. Water Resources Research, 2009, 45, .	4.2	330
7	Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change, 2018, 8, 193-199.	18.8	327
8	Heat stress causes substantial labour productivity loss in Australia. Nature Climate Change, 2015, 5, 647-651.	18.8	290
9	Factors of influence on flood damage mitigation behaviour by households. Environmental Science and Policy, 2014, 40, 69-77.	4.9	287
10	Detailed insights into the influence of flood-coping appraisals on mitigation behaviour. Global Environmental Change, 2013, 23, 1327-1338.	7.8	250
11	The Economic Impacts of Natural Disasters: A Review of Models and Empirical Studies. Review of Environmental Economics and Policy, 2019, 13, 167-188.	7.0	247
12	A global framework for future costs and benefits of river-flood protection in urban areas. Nature Climate Change, 2017, 7, 642-646.	18.8	231
13	Risk attitudes to low-probability climate change risks: WTP for flood insurance. Journal of Economic Behavior and Organization, 2012, 82, 151-166.	2.0	209
14	A global economic assessment of city policies to reduce climate change impacts. Nature Climate Change, 2017, 7, 403-406.	18.8	187
15	Insurance Against Climate Change and Flooding in the Netherlands: Present, Future, and Comparison with Other Countries. Risk Analysis, 2008, 28, 413-426.	2.7	182
16	A lower bound to the social cost of CO2 emissions. Nature Climate Change, 2014, 4, 253-258.	18.8	132
17	The effectiveness of flood risk communication strategies and the influence of social networks—Insights from an agent-based model. Environmental Science and Policy, 2016, 60, 44-52.	4.9	130
18	Long-term development and effectiveness of private flood mitigation measures: an analysis for the German part of the river Rhine. Natural Hazards and Earth System Sciences, 2012, 12, 3507-3518.	3.6	125

#	Article	IF	CITATIONS
19	Insights into Floodâ€Coping Appraisals of Protection Motivation Theory: Empirical Evidence from Germany and France. Risk Analysis, 2018, 38, 1239-1257.	2.7	121
20	MONETARY VALUATION OF INSURANCE AGAINST FLOOD RISK UNDER CLIMATE CHANGE*. International Economic Review, 2012, 53, 1005-1026.	1.3	120
21	Individual preferences for reducing flood risk to near zero through elevation. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 229-244.	2.1	112
22	Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters. Global Environmental Change, 2015, 31, 74-84.	7.8	112
23	Economic losses from US hurricanes consistent with an influence from climate change. Nature Geoscience, 2015, 8, 880-884.	12.9	110
24	Monetary valuation of the social cost of CO 2 emissions: A critical survey. Ecological Economics, 2015, 114, 33-46.	5.7	109
25	Climate change and increased risk for the insurance sector: a global perspective and an assessment for the Netherlands. Natural Hazards, 2010, 52, 577-598.	3.4	108
26	Explaining differences in flood management approaches in Europe and in the <scp>USA</scp> – a comparative analysis. Journal of Flood Risk Management, 2017, 10, 436-445.	3.3	106
27	Cumulative CO ₂ emissions: shifting international responsibilities for climate debt. Climate Policy, 2008, 8, 569-576.	5.1	103
28	Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agentâ€Based Model Approach. Risk Analysis, 2017, 37, 1977-1992.	2.7	103
29	Climate change impacts on pricing long-term flood insurance: A comprehensive study for the Netherlands. Global Environmental Change, 2011, 21, 1045-1060.	7.8	99
30	Lowâ€Probability Flood Risk Modeling for New York City. Risk Analysis, 2013, 33, 772-788.	2.7	98
31	Cost estimates for flood resilience and protection strategies in New York City. Annals of the New York Academy of Sciences, 2013, 1294, 1-104.	3.8	90
32	Reflections on the current debate on how to link flood insurance and disaster risk reduction in the European Union. Natural Hazards, 2015, 79, 1451-1479.	3.4	87
33	Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Development, 2021, 137, 105214.	4.9	84
34	Climate change and hailstorm damage: Empirical evidence and implications for agriculture and insurance. Resources and Energy Economics, 2010, 32, 341-362.	2.5	78
35	Incentivising flood risk adaptation through risk based insurance premiums: Trade-offs between affordability and risk reduction. Ecological Economics, 2016, 125, 1-13.	5.7	78
36	Dealing with Uncertainty in Flood Management Through Diversification. Ecology and Society, 2008, 13,	2.3	77

#	Article	IF	CITATIONS
37	Adoption of Individual Flood Damage Mitigation Measures in New York City: An Extension of Protection Motivation Theory. Risk Analysis, 2019, 39, 2143-2159.	2.7	72
38	The safe development paradox: An agent-based model for flood risk under climate change in the European Union. Global Environmental Change, 2020, 60, 102009.	7.8	70
39	Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrology and Earth System Sciences, 2018, 22, 5629-5637.	4.9	67
40	Managing natural disaster risks in a changing climate. Environmental Hazards, 2009, 8, 209-225.	2.5	66
41	Evaluating the effectiveness of flood damage mitigation measures by the application of propensity score matching. Natural Hazards and Earth System Sciences, 2014, 14, 1731-1747.	3.6	65
42	Floodâ€resilient waterfront development in New York City: Bridging flood insurance, building codes, and flood zoning. Annals of the New York Academy of Sciences, 2011, 1227, 1-82.	3.8	64
43	Influence of flood risk characteristics on flood insurance demand: a comparison between Germany and the Netherlands. Natural Hazards and Earth System Sciences, 2013, 13, 1691-1705.	3.6	61
44	Moral Hazard in Natural Disaster Insurance Markets: Empirical Evidence from Germany and the United States. Land Economics, 2017, 93, 179-208.	0.9	61
45	Advancing disaster policies by integrating dynamic adaptive behaviour in risk assessments using an agent-based modelling approach. Environmental Research Letters, 2019, 14, 044022.	5.2	61
46	A global review of the impact of basis risk on the functioning of and demand for index insurance. International Journal of Disaster Risk Reduction, 2018, 28, 845-853.	3.9	60
47	Bounded Rationality, Climate Risks, and Insurance: Is There a Market for Natural Disasters?. Land Economics, 2009, 85, 265-278.	0.9	58
48	Influence of climate change and socio-economic development on catastrophe insurance: a case study of flood risk scenarios in the Netherlands. Regional Environmental Change, 2015, 15, 1717-1729.	2.9	51
49	Accounting for risk aversion, income distribution and social welfare in costâ€benefit analysis for flood risk management. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e446.	8.1	50
50	Do flood risk perceptions provide useful insights for flood risk management? Findings from central <scp>V</scp> ietnam. Journal of Flood Risk Management, 2012, 5, 295-302.	3.3	49
51	Framing of risk and preferences for annual and multi-year flood insurance. Journal of Economic Psychology, 2013, 39, 357-375.	2.2	47
52	Climate change induced socio-economic tipping points: review and stakeholder consultation for policy relevant research. Environmental Research Letters, 2020, 15, 023001.	5.2	47
53	Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights. Environmental and Resource Economics, 2014, 58, 1-33.	3.2	46
54	Flood insurance arrangements in the European Union for future flood risk under climate and socioeconomic change. Global Environmental Change, 2019, 58, 101966.	7.8	46

#	Article	IF	CITATIONS
55	How sensitive is Nordhaus to Weitzman? Climate policy in DICE with an alternative damage function. Economics Letters, 2012, 117, 372-374.	1.9	45
56	Stimulating flood damage mitigation through insurance: an assessment of the French CatNat system. Environmental Hazards, 2013, 12, 258-277.	2.5	45
57	Adoption of flood preparedness actions: A household level study in rural communities in Tabasco, Mexico. International Journal of Disaster Risk Reduction, 2017, 24, 428-438.	3.9	45
58	Impacts of Flooding and Flood Preparedness on Subjective Well-Being: A Monetisation of the Tangible and Intangible Impacts. Journal of Happiness Studies, 2019, 20, 665-682.	3.2	42
59	Long Term Adaptation to Heat Stress: Shifts in the Minimum Mortality Temperature in the Netherlands. Frontiers in Physiology, 2020, 11, 225.	2.8	42
60	Economic valuation of green and blue nature in cities: A meta-analysis. Ecological Economics, 2020, 169, 106480.	5.7	40
61	Property price effects of green interventions in cities: A meta-analysis and implications for gentrification. Environmental Science and Policy, 2020, 112, 293-304.	4.9	40
62	An economic evaluation of adaptation pathways in coastal mega cities: An illustration for Los Angeles. Science of the Total Environment, 2019, 678, 647-659.	8.0	36
63	Low-carbon transition is improbable without carbon pricing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23219-23220.	7.1	36
64	Pathways to resilience: adapting to sea level rise in Los Angeles. Annals of the New York Academy of Sciences, 2018, 1427, 1-90.	3.8	35
65	HOW SENSITIVE ARE US HURRICANE DAMAGES TO CLIMATE? COMMENT ON A PAPER BY W. D. NORDHAUS. Climate Change Economics, 2011, 02, 1-7.	5.0	33
66	Political affiliation affects adaptation to climate risks: Evidence from New York City. Climatic Change, 2016, 138, 353-360.	3.6	33
67	A micro-scale cost-benefit analysis of building-level flood risk adaptation measures in Los Angeles. Water Resources and Economics, 2020, 32, 100147.	2.2	32
68	Improving Flood Risk Communication by Focusing on Preventionâ€Focused Motivation. Risk Analysis, 2014, 34, 309-322.	2.7	31
69	More Than Fear Induction: Toward an Understanding of People's Motivation to Be Wellâ€Prepared for Emergencies in Floodâ€Prone Areas. Risk Analysis, 2015, 35, 518-535.	2.7	31
70	Determinants of Probability Neglect and Risk Attitudes for Disaster Risk: An Online Experimental Study of Flood Insurance Demand among Homeowners. Risk Analysis, 2019, 39, 2514-2527.	2.7	31
71	You Have Been Framed! How Antecedents of Information Need Mediate the Effects of Risk Communication Messages. Risk Analysis, 2014, 34, 1506-1520.	2.7	29
72	Economic evaluation of climate risk adaptation strategies: Cost-benefit analysis of flood protection in Tabasco, Mexico. Atmosfera, 2017, 30, 101-120.	0.8	29

#	Article	IF	CITATIONS
73	Meeting goals of sustainability policy: CO2 emission reduction, cost-effectiveness and societal acceptance. An analysis of the proposal to phase-out coal in the Netherlands. Energy Policy, 2020, 138, 111210.	8.8	29
74	Protecting against disaster risks: Why insurance and prevention may be complements. Journal of Risk and Uncertainty, 2019, 59, 151-169.	1.5	28
75	Perceptions of Corporate Cyber Risks and Insurance Decision-Making. Geneva Papers on Risk and Insurance: Issues and Practice, 2018, 43, 239-274.	2.1	26
76	Behavioral motivations for self-insurance under different disaster risk insurance schemes. Journal of Economic Behavior and Organization, 2020, 180, 967-991.	2.0	26
77	Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170329.	3.4	25
78	A dual-track transition to global carbon pricing. Climate Policy, 2020, 20, 1057-1069.	5.1	25
79	Did the ECB respond to the stock market before the crisis?. Journal of Policy Modeling, 2010, 32, 303-322.	3.1	24
80	Social vulnerability in cost-benefit analysis for flood risk management. Environment and Development Economics, 2020, 25, 115-134.	1.5	24
81	Risk reduction in compulsory disaster insurance: Experimental evidence on moral hazard and financial incentives. Journal of Behavioral and Experimental Economics, 2020, 84, 101500.	1.2	24
82	Cost–benefit analysis of floodâ€zoning policies: A review of current practice. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1387.	6.5	23
83	Drivers and dimensions of flood risk perceptions: Revealing an implicit selection bias and lessons for communication policies. Global Environmental Change, 2022, 73, 102465.	7.8	23
84	Response to "The Necessity for Longitudinal Studies in Risk Perception Research― Risk Analysis, 2013, 33, 760-762.	2.7	21
85	Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference. Natural Hazards and Earth System Sciences, 2013, 13, 737-754.	3.6	21
86	Communicating adaptation with emotions: the role of intense experiences in raising concern about extreme weather Ecology and Society, 2014, 19, .	2.3	21
87	Risk allocation in a public–private catastrophe insurance system: an actuarial analysis of deductibles, stopâ€loss, and premiums. Journal of Flood Risk Management, 2015, 8, 116-134.	3.3	21
88	Benefits and Limitations of Real Options Analysis for the Practice of River Flood Risk Management. Water Resources Research, 2018, 54, 3018-3036.	4.2	20
89	Future Public Sector Flood Risk and Risk Sharing Arrangements: An Assessment for Austria. Ecological Economics, 2019, 156, 153-163.	5.7	20
90	Insights into Flood Risk Misperceptions of Homeowners in the Dutch River Delta. Risk Analysis, 2020, 40, 1450-1468.	2.7	19

#	Article	IF	CITATIONS
91	Impacts of Climate Change and Remote Natural Catastrophes on EU Flood Insurance Markets: An Analysis of Soft and Hard Reinsurance Markets for Flood Coverage. Atmosphere, 2020, 11, 146.	2.3	19
92	Global impact of a climate treaty if the Human Development Index replaces GDP as a welfare proxy. Climate Policy, 2018, 18, 76-85.	5.1	18
93	Flood insurance demand and probability weighting: The influences of regret, worry, locus of control and the threshold of concern heuristic. Water Resources and Economics, 2020, 30, 100144.	2.2	18
94	Anticipating seaâ€level rise and human migration: A review of empirical evidence and avenues for future research. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, e747.	8.1	18
95	Parallel Tracks Towards a Global Treaty on Carbon Pricing. SSRN Electronic Journal, 2018, , .	0.4	17
96	ECONOMIC EXPERIMENTS, HYPOTHETICAL SURVEYS AND MARKET DATA STUDIES OF INSURANCE DEMAND AGAINST LOWâ€PROBABILITY/HIGHâ€IMPACT RISKS: A SYSTEMATIC REVIEW OF DESIGNS, THEORETICAL INSIGH AND DETERMINANTS OF DEMAND. Journal of Economic Surveys, 2019, 33, 1493-1530.	¦∏‰. 6	16
97	Individual hurricane evacuation intentions during the COVID-19 pandemic: insights for risk communication and emergency management policies. Natural Hazards, 2022, 111, 507-522.	3.4	16
98	Integrated Disaster Risk Management and Adaptation. Climate Risk Management, Policy and Governance, 2019, , 287-315.	2.5	15
99	Global economic impacts of climate variability and change during the 20th century. PLoS ONE, 2017, 12, e0172201.	2.5	14
100	Economic impacts and risks of climate change under failure and success of the Paris Agreement. Annals of the New York Academy of Sciences, 2021, 1504, 95-115.	3.8	14
101	Flood risk and climate change in the Rotterdam area, The Netherlands: enhancing citizen's climate risk perceptions and prevention responses despite skepticism. Regional Environmental Change, 2016, 16, 1613-1622.	2.9	13
102	Sex differences in temperature-related all-cause mortality in the Netherlands. International Archives of Occupational and Environmental Health, 2022, 95, 249-258.	2.3	13
103	Regional Inequalities in Flood Insurance Affordability and Uptake under Climate Change. Sustainability, 2020, 12, 8734.	3.2	12
104	All by myself? Testing descriptive social norm-nudges to increase flood preparedness among homeowners. Behavioural Public Policy, 0, , 1-33.	2.4	12
105	Behavioral biases and heuristics in perceptions of COVIDâ€19 risks and prevention decisions. Risk Analysis, 2022, 42, 2671-2690.	2.7	12
106	Managing exposure to flooding in New York City. Nature Climate Change, 2012, 2, 377-377.	18.8	11
107	Cities' response to climate risks. Nature Climate Change, 2014, 4, 759-760.	18.8	11
108	Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands. Climatic Change, 2020, 162, 545-562.	3.6	11

#	Article	IF	CITATIONS
109	Default options and insurance demand. Journal of Economic Behavior and Organization, 2021, 183, 39-56.	2.0	11
110	Charity hazard and the flood insurance protection gap: An EU scale assessment under climate change. Ecological Economics, 2022, 193, 107289.	5.7	11
111	Integrating Behavioral Theories in Agent-Based Models for Agricultural Drought Risk Assessments. Frontiers in Water, 2021, 3, .	2.3	10
112	Climate Adaptation and Flood Risk in Coastal Cities. , 0, , .		10
113	Portfolios of adaptation investments in water management. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1247-1265.	2.1	9
114	Firm Level Evidence of Disaster Impacts on Growth in Vietnam. Environmental and Resource Economics, 2021, 79, 277-322.	3.2	8
115	The Assessment of Impacts and Risks of Climate Change on Agriculture (AIRCCA) model: a tool for the rapid global risk assessment for crop yields at a spatially explicit scale. Spatial Economic Analysis, 2020, 15, 262-279.	1.6	7
116	Geographical scoping and willingness-to-pay for nature protection. Journal of Integrative Environmental Sciences, 2018, 15, 41-58.	2.5	6
117	Extending integrated assessment models′ damage functions to include adaptation and dynamic sensitivity. Environmental Modelling and Software, 2019, 121, 104504.	4.5	6
118	CLIMRISK-RIVER: Accounting for local river flood risk in estimating the economic cost of climate change. Environmental Modelling and Software, 2020, 132, 104784.	4.5	6
119	Time of emergence of economic impacts of climate change. Environmental Research Letters, 2021, 16, 074039.	5.2	6
120	Temperature Effects on Electricity and Gas Consumption: Empirical Evidence from Mexico and Projections under Future Climate Conditions. Sustainability, 2021, 13, 305.	3.2	6
121	Setting descriptive norm nudges to promote demand for insurance against increasing climate change risk. Geneva Papers on Risk and Insurance: Issues and Practice, 2022, 47, 27-49.	2.1	6
122	A stepwise approach for identifying climate change induced socio-economic tipping points. Climate Risk Management, 2022, 37, 100445.	3.2	6
123	Brief communication "Hurricane Irene: a wake-up call for New York City?". Natural Hazards and Earth System Sciences, 2012, 12, 1837-1840.	3.6	5
124	An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand. Journal of Risk and Uncertainty, 2021, 63, 275-318.	1.5	5
125	Weather Indicators for Insured Hailstorm Damage to Motor Vehicles and Potential Climate Change Impacts. Geneva Papers on Risk and Insurance: Issues and Practice, 2016, 41, 512-527.	2.1	3
126	Economic Assessment of Mitigating Damage of Flood Events: Cost–Benefit Analysis of Flood-Proofing Commercial Buildings in Umbria, Italy. Geneva Papers on Risk and Insurance: Issues and Practice, 2017, 42, 585-608.	2.1	3

#	Article	IF	CITATIONS
127	CLIMATE POLICY WITHOUT INTERTEMPORAL DICTATORSHIP: CHICHILNISKY CRITERION VERSUS CLASSICAL UTILITARIANISM IN DICE. Climate Change Economics, 2018, 09, 1850002.	5.0	3
128	Methodological issues in natural disaster loss normalisation studies. Environmental Hazards, 2021, 20, 112-115.	2.5	3
129	Risk communication nudges and flood insurance demand. Climate Risk Management, 2021, 34, 100366.	3.2	3
130	Climate Adaptation Cost for Flood Risk Management in the Netherlands. , 2012, , .		3
131	Reply to 'Statistics of flood risk'. Nature Climate Change, 2014, 4, 844-845.	18.8	2
132	An agentâ€based model for evaluating reforms of the National Flood Insurance Program: A benchmarked model applied to Jamaica Bay, NYC. Risk Analysis, 2023, 43, 405-422.	2.7	2
133	Overcoming misleading carbon footprints in the financial sector. Climate Policy, 2022, 22, 817-822.	5.1	2
134	A dual-track transition to global carbon pricing: the glass is half full. Climate Policy, 2020, 20, 1349-1354.	5.1	1
135	Individual hurricane evacuation intentions during the COVID-19 pandemic: insights for risk communication and emergency management policies. Natural Hazards, 2021, , 1-16.	3.4	1
136	Alistair Munro: Bounded Rationality and Public Policy: A Perspective from Behavioural Economics. Ian J. Bateman (ed.): The Economics of Non-Market Goods and Resources. Environmental and Resource Economics, 2011, 49, 305-308.	3.2	0
137	As Temporal as Spatial: It Is Geographical – Exploring Spatio-temporality in Modelling the Risk of Climate Change and Natural Hazards. Norsk Geografisk Tidsskrift, 2017, 71, 60-61.	0.7	0
138	Behavioral insights into the causes of underinsurance against flood risks: Experimental evidence from the Netherlands. , 2022, , 119-136.		0