
Enrique V Ramos-Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/649327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manufacture of Carbon Materials with High Nitrogen Content. Materials, 2022, 15, 2415.	1.3	12
2	New Generation of MOF-Monoliths Based on Metal Foams. Molecules, 2022, 27, 1968.	1.7	11
3	Molybdenum Oxide Supported on Ti ₃ AlC ₂ is an Active Reverse Water–Gas Shift Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 4957-4966.	3.2	15
4	Enhancing catalytic epoxide ring-opening selectivity using surface-modified Ti ₃ C ₂ T _x MXenes. 2D Materials, 2021, 8, 035003.	2.0	15
5	Mixedâ€Valence Ce/Zr Metalâ€Organic Frameworks: Controlling the Oxidation State of Cerium in Oneâ€Pot Synthesis Approach. Advanced Functional Materials, 2021, 31, 2102582.	7.8	25
6	Highly N2-Selective Activated Carbon-Supported Pt-In Catalysts for the Reduction of Nitrites in Water. Frontiers in Chemistry, 2021, 9, 733881.	1.8	6
7	New route for the synthesis of Co-MOF from metal substrates. Microporous and Mesoporous Materials, 2021, 324, 111310.	2.2	11
8	Hydrogenation of 4-nitrochlorobenzene catalysed by cobalt nanoparticles supported on nitrogen-doped activated carbon. Catalysis Science and Technology, 2021, 11, 3845-3854.	2.1	7
9	Surface oxidation of Ti ₃ C ₂ T _x enhances the catalytic activity of supported platinum nanoparticles in ammonia borane hydrolysis. 2D Materials, 2021, 8, 015001.	2.0	17
10	Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti ₂ AlC MAX Phase. ChemSusChem, 2020, 13, 6401-6408.	3.6	26
11	Clean production of Zeolitic Imidazolate Framework 8 using Zamak residues as metal precursor and substrate. Journal of Cleaner Production, 2020, 260, 121081.	4.6	15
12	Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane. Chemical Engineering Science, 2019, 194, 2-9.	1.9	59
13	Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chemistry of Materials, 2019, 31, 5856-5866.	3.2	18
14	Effect of the CeO2 synthesis method on the behaviour of Pt/CeO2 catalysis for the water-gas shift reaction. International Journal of Hydrogen Energy, 2019, 44, 21837-21846.	3.8	47
15	Post‣ynthetic Modification of ZIFâ€8 Crystals and Films through UV Light Photoirradiation: Impact on the Physicochemical Behavior of the MOF. ChemPhysChem, 2019, 20, 3201-3209.	1.0	12
16	Methane hydrates: Nucleation in microporous materials. Chemical Engineering Journal, 2019, 360, 569-576.	6.6	59
17	A water-based room temperature synthesis of ZIF-93 for CO ₂ adsorption. Journal of Materials Chemistry A, 2018, 6, 5598-5602.	5.2	46
18	Understanding the oxidative dehydrogenation of ethyl lactate to ethyl pyruvate over vanadia/titania. Catalysis Science and Technology, 2018, 8, 3737-3747.	2.1	31

#	Article	IF	CITATIONS
19	Effect of cold Ar plasma treatment on the catalytic performance of Pt/CeO2 in water-gas shift reaction (WGS). Applied Catalysis B: Environmental, 2018, 225, 121-127.	10.8	39
20	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie - International Edition, 2018, 57, 17094-17099.	7.2	54
21	CuOx/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction. Applied Catalysis A: General, 2018, 562, 28-36.	2.2	55
22	Layered double hydroxides as base catalysts for the synthesis of dimethyl carbonate. Catalysis Today, 2017, 296, 254-261.	2.2	16
23	Understanding ZIFâ€8 Performance upon Gas Adsorption by Means of Inelastic Neutron Scattering. ChemistrySelect, 2017, 2, 2750-2753.	0.7	21
24	Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs. Journal of Materials Chemistry A, 2017, 5, 11032-11039.	5.2	36
25	Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 2017, 46, 3134-3184.	18.7	861
26	Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal. Journal of Materials Chemistry A, 2017, 5, 20120-20125.	5.2	56
27	TixCe(1-x)O2 as Pt support for the PROX reaction: Effect of the solvothermal synthesis. International Journal of Hydrogen Energy, 2017, 42, 29262-29273.	3.8	7
28	Highâ€Performance of Gas Hydrates in Confined Nanospace for Reversible CH ₄ /CO ₂ Storage. Chemistry - A European Journal, 2016, 22, 10028-10035.	1.7	19
29	Influence of the Amide Groups in the CO ₂ /N ₂ Selectivity of a Series of Isoreticular, Interpenetrated Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 6016-6023.	1.4	73
30	Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering. Chemical Communications, 2016, 52, 3639-3642.	2.2	106
31	Paving the way for methane hydrate formation on metal–organic frameworks (MOFs). Chemical Science, 2016, 7, 3658-3666.	3.7	103
32	Highly dispersed Pt+ on Ti Ce(1â^)O2 as an active phase in preferential oxidation of CO. Applied Catalysis B: Environmental, 2016, 180, 169-178.	10.8	32
33	High performance of Cu/CeO2-Nb2O5 catalysts for preferential CO oxidation and total combustion of toluene. Applied Catalysis A: General, 2015, 502, 129-137.	2.2	22
34	Improved mechanical stability of HKUST-1 in confined nanospace. Chemical Communications, 2015, 51, 14191-14194.	2.2	19
35	Preferential oxidation of CO in excess of H2 on Pt/CeO2–Nb2O5 catalysts. Applied Catalysis A: General, 2015, 492, 201-211.	2.2	28
36	Co@NH ₂ -MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H ₂ production. Energy and Environmental Science, 2015, 8, 364-375.	15.6	362

#	Article	IF	CITATIONS
37	Superior performance of gold supported on doped CeO 2 catalysts for the preferential CO oxidation (PROX). Applied Catalysis A: General, 2014, 487, 119-129.	2.2	29
38	Understanding the solar-driven reduction of CO ₂ on doped ceria. RSC Advances, 2014, 4, 16456-16463.	1.7	27
39	Titania-catalysed oxidative dehydrogenation of ethyl lactate: effective yet selective free-radical oxidation. Green Chemistry, 2014, 16, 3358-3363.	4.6	41
40	Induced Chirality in a Metal–Organic Framework by Postsynthetic Modification for Highly Selective Asymmetric Aldol Reactions. ChemCatChem, 2014, 6, 2211-2214.	1.8	25
41	Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Transactions, 2013, 42, 5546.	1.6	33
42	Influence of the synthesis route on the catalytic oxidation of 1,2-dichloroethane over CeO2/H-ZSM5 catalysts. Applied Catalysis A: General, 2013, 456, 96-104.	2.2	45
43	Towards acid MOFs – catalytic performance of sulfonic acid functionalized architectures. Catalysis Science and Technology, 2013, 3, 2311.	2.1	141
44	Chloromethylation as a functionalisation pathway for metal–organic frameworks. CrystEngComm, 2012, 14, 4109.	1.3	47
45	Interplay of Metal Node and Amine Functionality in NH ₂ -MIL-53: Modulating Breathing Behavior through Intra-framework Interactions. Langmuir, 2012, 28, 12916-12922.	1.6	98
46	Towards efficient polyoxometalate encapsulation in MIL-100(Cr): influence of synthesis conditions. New Journal of Chemistry, 2012, 36, 977.	1.4	63
47	From biodiesel and bioethanol to liquid hydrocarbonfuels: new hydrotreating and advanced microbial technologies. Energy and Environmental Science, 2012, 5, 5638-5652.	15.6	88
48	Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 2012, 22, 10313.	6.7	176
49	Highly dispersed ceria on activated carbon for the catalyzed ozonation of organic pollutants. Applied Catalysis B: Environmental, 2012, 113-114, 308-317.	10.8	44
50	Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance. Journal of Catalysis, 2012, 289, 42-52.	3.1	147
51	Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity. Journal of Catalysis, 2011, 281, 177-187.	3.1	269
52	Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Applied Catalysis A: General, 2011, 406, 22-33.	2.2	108
53	Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 2011, 23, 2565-2572.	3.2	479
54	MOFs meet monoliths: Hierarchical structuring metal organic framework catalysts. Applied Catalysis A: General, 2011, 391, 261-267.	2.2	126

#	Article	IF	CITATIONS
55	Influence of the surface chemistry of activated carbons on the ATRP catalysis of methyl methacrylate polymerization. Applied Catalysis A: General, 2011, 397, 225-233.	2.2	7
56	Effect of the support, Al2O3 or SiO2, on the catalytic behaviour of Cr–ZnO promoted Pt catalysts in the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2011, 402, 50-58.	2.2	31
57	Influence of the Oxidation Process of Carbon Material on the Mechanical Properties of Cement Mortars. Journal of Materials in Civil Engineering, 2011, 23, 321-329.	1.3	21
58	Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 2010, 269, 229-241.	3.1	311
59	Effect of the metal precursor on the properties of Ru/ZnO catalysts. Applied Catalysis A: General, 2010, 374, 221-227.	2.2	27
60	Selective Hydrogenation of Cinnamaldehyde over (111) Preferentially Oriented Pt Particles Supported on Expanded Graphite. Catalysis Letters, 2009, 133, 267-272.	1.4	30
61	Use of nanotubes of natural halloysite as catalyst support in the atom transfer radical polymerization of methyl methacrylate. Microporous and Mesoporous Materials, 2009, 120, 132-140.	2.2	95
62	The effect of the cerium precursor and the carbon surface chemistry on the dispersion of ceria on activated carbon. Journal of Materials Science, 2008, 43, 1525-1531.	1.7	17
63	Pt/Ta2O5–ZrO2 catalysts for vapour phase selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2008, 349, 165-169.	2.2	30
64	Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support. Journal of Catalysis, 2008, 258, 52-60.	3.1	67
65	Preparation and characterization of CeO2 highly dispersed on activated carbon. Materials Research Bulletin, 2008, 43, 1850-1857.	2.7	66
66	Enhancing the catalytic performance of Pt/ZnO in the vapour phase hydrogenation of crotonaldehyde by the addition of Cr to the support. Catalysis Communications, 2008, 9, 1243-1246.	1.6	25
67	CHAPTER 10. MOFs as Nano‐reactors. RSC Catalysis Series, 0, , 310-343.	0.1	14