Franãsois Jonard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6492771/publications.pdf

Version: 2024-02-01

471509 477307 41 879 17 29 citations h-index g-index papers 46 46 46 1284 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: a review. Wiley Interdisciplinary Reviews: Water, 2015, 2, 635-647.	6.5	86
2	Estimating Forest Structure from UAV-Mounted LiDAR Point Cloud Using Machine Learning. Remote Sensing, 2021, 13, 352.	4.0	67
3	Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: Current status and challenges. Agricultural and Forest Meteorology, 2020, 291, 108088.	4.8	62
4	Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Campaign in the Rur and Erft Catchments, Germany. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 1728-1743.	6.3	61
5	Mapping Field-Scale Soil Moisture With L-Band Radiometer and Ground-Penetrating Radar Over Bare Soil. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2863-2875.	6.3	55
6	Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003. Journal of Hydrology, 2011, 409, 371-381.	5.4	52
7	Characterization of tillage effects on the spatial variation of soil properties using ground-penetrating radar and electromagnetic induction. Geoderma, 2013, 207-208, 310-322.	5.1	47
8	Spatial and temporal patterns of throughfall volume in a deciduous mixed-species stand. Journal of Hydrology, 2011, 400, 244-254.	5.4	42
9	Characterization of Crop Canopies and Water Stress Related Phenomena using Microwave Remote Sensing Methods: A Review. Vadose Zone Journal, 2012, 11, vzj2011.0138ra.	2.2	41
10	Estimation of Hydraulic Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 3095-3109.	6.3	37
11	Soil carbon dioxide efflux in pure and mixed stands of oak and beech. Annals of Forest Science, 2007, 64, 141-150.	2.0	33
12	Accounting for soil surface roughness in the inversion of ultrawideband off-ground GPR signal for soil moisture retrieval. Geophysics, 2012, 77, H1-H7.	2.6	33
13	Soil moisture sensor calibration for organic soil surface layers. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 109-125.	1.6	32
14	A Dielectric Mixing Model Accounting for Soil Organic Matter. Vadose Zone Journal, 2019, 18, 190036.	2.2	24
15	Estimating Canopy Density Parameters Time-Series for Winter Wheat Using UAS Mounted LiDAR. Remote Sensing, 2021, 13, 710.	4.0	24
16	Passive L-Band Microwave Remote Sensing of Organic Soil Surface Layers: A Tower-Based Experiment. Remote Sensing, 2018, 10, 304.	4.0	22
17	The Soil Moisture Active Passive Experiments: Validation of the SMAP Products in Australia. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 2922-2939.	6.3	19
18	Vegetation Optical Depth and Soil Moisture Retrieved from L-Band Radiometry over the Growth Cycle of a Winter Wheat. Remote Sensing, 2018, 10, 1637.	4.0	17

#	Article	IF	Citations
19	Efficiency of end effect probes for in-situ permittivity measurements in the 0.5–6GHz frequency range and their application for organic soil horizons study. Sensors and Actuators A: Physical, 2017, 254, 78-88.	4.1	15
20	The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sensing, 2021, 13, 825.	4.0	14
21	Modeling of Multilayered Media Green's Functions With Rough Interfaces. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7671-7681.	6.3	12
22	<i>In situ</i> characterization of forest litter using groundâ€penetrating radar. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 879-894.	3.0	10
23	Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth. Remote Sensing, 2019, 11, 2353.	4.0	10
24	Remote Sensing of Instantaneous Drought Stress at Canopy Level Using Sun-Induced Chlorophyll Fluorescence and Canopy Reflectance. Remote Sensing, 2022, 14, 2642.	4.0	10
25	Modelling the Temporal Dynamics of Groundwater Pollution Risks at the African Scale. Water (Switzerland), 2020, 12, 1406.	2.7	9
26	HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions $\hat{a} \in \text{``Part} \hat{A} = \text$	3.6	7
27	Accounting for Surface Roughness Scattering in the Characterization of Forest Litter with Ground-Penetrating Radar. Remote Sensing, 2019, 11, 828.	4.0	5
28	Inter-Comparison of Proximal Near-Surface Soil Moisture Measurement Techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2370-2378.	4.9	5
29	Electromagnetic characterization of organic-rich soils at the microwave L-band with ground-penetrating radar, radiometry and laboratory measurements. , 2014, , .		4
30	Estimation of Vegetation Structure Parameters From SMAP Radar Intensity Observations. IEEE Transactions on Geoscience and Remote Sensing, 2020, , 1-17.	6.3	4
31	Toward estimation of seasonal water dynamics of winter wheat from ground-based L-band radiometry: a concept study. Biogeosciences, 2022, 19, 2273-2294.	3.3	4
32	Ground-Based Soil Moisture Determination. Ecohydrology, 2018, , 1-42.	0.2	3
33	Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations. AGILE: GIScience Series, 0, 3, 1-4.	0.0	3
34	Soil moisture retrieval using L-band radiometer and ground-penetrating radar., 2011,,.		2
35	Ground-Based Soil Moisture Determination. Ecohydrology, 2019, , 29-70.	0.2	2
36	Global L-Band Vegetation Volume Fraction Estimates for Modeling Vegetation Optical Depth., 2021,,.		2

#	Article	IF	CITATIONS
37	IMPACT OF PERMITTIVITY PATTERNS ON FULLY POLARIMETRIC BRIGHTNESS TEMPERATURE SIGNATURES AT L-BAND. Progress in Electromagnetics Research, 2019, 166, 75-93.	4.4	1
38	Reconstruction of forest litter horizons using ground-penetrating radar. , 2015, , .		0
39	Vegetation Optical Depth and Soil Moisture Retrieval Using L-Band Radiometry Over the Entire Growing Season of a Winter Wheat Stand. , 2018, , .		O
40	Estimation Of Volume Fraction And Gravimetric Moisture Of Winter Wheat Based On Microwave Attenuation: A Field Scale Study. , 2019, , .		0
41	fUAS LiDAR Crop LAI Estimations from Canopy Density. , 2021, , .		0