Steven C Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6492662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
2	Arabidopsis plants expressing only the redoxâ€regulated Rcaâ€Î± isoform have constrained photosynthesis and plant growth. Plant Journal, 2020, 103, 2250-2262.	2.8	7
3	In vivo evidence for a regulatory role of phosphorylation of <i>Arabidopsis</i> Rubisco activase at the Thr78 site. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18723-18731.	3.3	22
4	The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. Journal of Plant Physiology, 2019, 241, 153031.	1.6	42
5	Increased temperatures may safeguard the nutritional quality of crops under future elevated <scp>CO</scp> ₂ concentrations. Plant Journal, 2019, 97, 872-886.	2.8	41
6	Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants. Biochemical Journal, 2018, 475, 207-223.	1.7	61
7	Four tyrosine residues of the rice immune receptor XA21 are not required for interaction with the co-receptor OsSERK2 or resistance to <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . PeerJ, 2018, 6, e6074.	0.9	4
8	Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28). Journal of Biological Chemistry, 2017, 292, 3988-4002.	1.6	48
9	Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases. Journal of Biological Chemistry, 2017, 292, 12643-12652.	1.6	45
10	Identification of large variation in the photosynthetic induction response among 37 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity. Photosynthesis Research, 2017, 131, 305-315.	1.6	49
11	Allosteric Control of a Plant Receptor Kinase through S-Glutathionylation. Biophysical Journal, 2017, 113, 2354-2363.	0.2	47
12	Tyrosine-610 in the Receptor Kinase BAK1 Does Not Play a Major Role in Brassinosteroid Signaling or Innate Immunity. Frontiers in Plant Science, 2017, 8, 1273.	1.7	5
13	The Plastid Casein Kinase 2 Phosphorylates Rubisco Activase at the Thr-78 Site but Is Not Essential for Regulation of Rubisco Activation State. Frontiers in Plant Science, 2016, 7, 404.	1.7	15
14	Canopy position has a profound effect on soybean seed composition. PeerJ, 2016, 4, e2452.	0.9	28
15	Functional analysis of the BRI1 receptor kinase by Thr-for-Ser substitution in a regulatory autophosphorylation site. Frontiers in Plant Science, 2015, 6, 562.	1.7	10
16	Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of <i>Arabidopsis</i> BRI1-associated receptor-like kinase 1 (BAK1) <i>inÂvitro</i> . Biochemical Journal, 2015, 467, 399-413.	1.7	37
17	Photosystem IIâ€Inhibitors Play a Limited Role in Sweet Corn Response to 4â€Hydroxyphenyl Pyruvate Dioxygenaseâ€Inhibiting Herbicides. Agronomy Journal, 2014, 106, 1317-1323.	0.9	11
18	The Carboxy-terminus of BAK1 regulates kinase activity and is required for normal growth of Arabidopsis. Frontiers in Plant Science, 2014, 5, 16.	1.7	15

STEVEN C HUBER

#	Article	IF	CITATIONS
19	Oligomerization, Membrane Association, and in Vivo Phosphorylation of Sugarcane UDP-glucose Pyrophosphorylase. Journal of Biological Chemistry, 2014, 289, 33364-33377.	1.6	11
20	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	6.0	152
21	Impact of Ca2+on structure of soybean CDPKβ and accessibility of the Tyr-24 autophosphorylation site. Plant Signaling and Behavior, 2013, 8, e27671.	1.2	2
22	Tyrosine Phosphorylation of the BRI1 Receptor Kinase Occurs via a Post-Translational Modification and is Activated by the Juxtamembrane Domain. Frontiers in Plant Science, 2012, 3, 175.	1.7	47
23	CDPKs are dualâ€specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity. FEBS Letters, 2012, 586, 4070-4075.	1.3	34
24	Grand Challenges in Plant Physiology: The Underpinning of Translational Research. Frontiers in Plant Science, 2011, 2, 48.	1.7	13
25	Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 658-663.	3.3	247
26	Sequential Transphosphorylation of the BRI1/BAK1 Receptor Kinase Complex Impacts Early Events in Brassinosteroid Signaling. Developmental Cell, 2008, 15, 220-235.	3.1	485
27	Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Current Opinion in Plant Biology, 2004, 7, 318-322.	3.5	95
28	Regulation of a Plant SNF1-Related Protein Kinase by Glucose-6-Phosphate. Plant Physiology, 2000, 123, 403-412.	2.3	116
29	Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. Plant Journal, 1999, 17, 407-413.	2.8	42
30	Identification of sucrose synthase as an actin-binding protein. FEBS Letters, 1998, 430, 205-208.	1.3	82
31	Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins. FEBS Letters, 1998, 435, 110-114.	1.3	148
32	Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Letters, 1997, 420, 151-155.	1.3	110
33	The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Letters, 1996, 387, 127-131.	1.3	156
34	14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS Letters, 1996, 398, 26-30.	1.3	141
35	Phosphorylation of Serine-15 of Maize Leaf Sucrose Synthase (Occurrence in Vivo and Possible) Tj ETQq1 1 0.78	4314 rgBT 2.3	- /Overlock 10 150
36	Metabolic activators of spinach leaf nitrate reductase: Effects on enzymatic activity and	1.6	23

dephosphorylation by endogenous phosphatases. Planta, 1995, 196, 180.

1.6 23

STEVEN C HUBER

#	Article	IF	CITATIONS
37	Salt Activation of Sucrose-Phosphate Synthase from Darkened Leaves of Maize and Other C-4 Plants. Plant and Cell Physiology, 1991, 32, 327-333.	1.5	12
38	Spinach leaf 6-phosphofructo-2-kinase. FEBS Letters, 1987, 213, 375-380.	1.3	14
39	Photosynthesis, reserve mobilization and enzymes of sucrose metabolism in soybean (Glycine max) cotyledons. Physiologia Plantarum, 1987, 70, 537-543.	2.6	38
40	Isolation and characterization of multiple forms of maize leaf sucrose-phosphate synthase. Physiologia Plantarum, 1987, 70, 653-658.	2.6	35
41	Diurnal changes in sucrose phosphate synthase activity in leaves. Physiologia Plantarum, 1985, 64, 81-87.	2.6	28
42	Resolution and characterization of multiple cytosolic phosphatases capable of hydrolyzing fructose-1,6-bisphosphate in spinach and soybean leaves. Physiologia Plantarum, 1984, 60, 577-582.	2.6	5
43	Effects of CO2 enrichment on photosynthesis and photosynthate partitioning in soybean (Glycine max) leaves. Physiologia Plantarum, 1984, 62, 95-101.	2.6	56
44	Control of galactosyl-sugar metabolism in relation to rate of germination. Physiologia Plantarum, 1983, 59, 387-392.	2.6	19
45	Spinach leaf sucrose phosphate synthase. FEBS Letters, 1983, 153, 293-297.	1.3	46
46	Substrates and inorganic phosphate control: the light activation of NADP-glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase in barley (Hordeum vulgare) chloroplasts. FEBS Letters, 1978, 92, 12-16.	1.3	19