List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6492432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning approach informs biology of cancer drug response. BMC Bioinformatics, 2022, 23, 184.	2.6	7
2	Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nature Communications, 2021, 12, 5238.	12.8	8
3	WDR26 and MTF2 are therapeutic targets in multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 203.	17.0	8
4	Functional Genomic Screening Independently Identifies CUL3 as a Mediator of Vemurafenib Resistance via Src-Rac1 Signaling Axis. Frontiers in Oncology, 2020, 10, 442.	2.8	45
5	A Genetic Screen to Identify Gain- and Loss-of-Function Modifications that Enhance T-cell Infiltration into Tumors. Cancer Immunology Research, 2020, 8, 1206-1214.	3.4	9
6	Src-Dependent DBL Family Members Drive Resistance to Vemurafenib in Human Melanoma. Cancer Research, 2019, 79, 5074-5087.	0.9	13
7	Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Frontiers in Oncology, 2019, 9, 611.	2.8	5
8	Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. Cell Reports, 2019, 28, 2608-2619.e6.	6.4	63
9	A simplified transposon mutagenesis method to perform phenotypic forward genetic screens in cultured cells. BMC Genomics, 2019, 20, 497.	2.8	5
10	Insertional mutagenesis using the Sleeping Beauty transposon system identifies drivers of erythroleukemia in mice. Scientific Reports, 2019, 9, 5488.	3.3	6
11	PI3Kδ Inhibition Enhances Sensitivity of Primary High-Risk Childhood B-Cell Acute Lymphoblastic Leukemia Cells to Glucocorticoid Chemotherapy. Blood, 2019, 134, 2572-2572.	1.4	0
12	A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Reports, 2018, 22, 1211-1224.	6.4	13
13	Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice. Hepatology, 2018, 67, 924-939.	7.3	36
14	A comprehensive evaluation of Hippo pathway silencing in sarcomas. Oncotarget, 2018, 9, 31620-31636.	1.8	19
15	A Transposon-based Analysis Reveals <i>RASA1</i> Is Involved in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 1357-1368.	0.9	34
16	Transposon mutagenesis identifies chromatin modifiers cooperating with <i>Ras</i> in thyroid tumorigenesis and detects <i>ATXN7</i> as a cancer gene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4951-E4960.	7.1	17
17	<i>Sleeping Beauty</i> Insertional Mutagenesis in Mice Identifies Drivers of Steatosis-Associated Hepatic Tumors. Cancer Research, 2017, 77, 6576-6588.	0.9	40
18	The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Molecular Metabolism, 2017, 6, 1468-1479.	6.5	67

#	Article	IF	CITATIONS
19	Transposon mutagenesis identifies candidate genes that cooperate with loss of transforming growth factorâ€beta signaling in mouse intestinal neoplasms. International Journal of Cancer, 2017, 140, 853-863.	5.1	19
20	A Trp53fl/flPtenfl/fl mouse model of undifferentiated pleomorphic sarcoma mediated by adeno-Cre injection and in vivo bioluminescence imaging. PLoS ONE, 2017, 12, e0183469.	2.5	13
21	<i>Sox2</i> and <i>Lef-1</i> interact with <i>Pitx2</i> to regulate incisor development and stem cell renewal. Development (Cambridge), 2016, 143, 4115-4126.	2.5	58
22	Conditional deletion of Sox17 reveals complex effects on uterine adenogenesis and function. Developmental Biology, 2016, 414, 219-227.	2.0	26
23	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
24	RNA sequencing of <i>Sleeping Beauty</i> transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens. Genome Research, 2016, 26, 119-129.	5.5	28
25	Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma. Nature Genetics, 2015, 47, 486-495.	21.4	61
26	A Hybrid Adenoviral Vector System Achieves Efficient Long-Term Gene Expression in the Liver viapiggyBacTransposition. Human Gene Therapy, 2015, 26, 377-385.	2.7	12
27	Cell-Internalization SELEX: Method for Identifying Cell-Internalizing RNA Aptamers for Delivering siRNAs to Target Cells. Methods in Molecular Biology, 2015, 1218, 187-199.	0.9	63
28	MicroRNAâ€494 within an oncogenic microRNA megacluster regulates G ₁ /S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatology, 2014, 59, 202-215.	7.3	109
29	Sequencing methods and datasets to improve functional interpretation of sleeping beauty mutagenesis screens. BMC Genomics, 2014, 15, 1150.	2.8	22
30	Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nature Genetics, 2014, 46, 24-32.	21.4	105
31	MicroRNA-26b Represses Colon Cancer Cell Proliferation by Inhibiting Lymphoid Enhancer Factor 1 Expression. Molecular Cancer Therapeutics, 2014, 13, 1942-1951.	4.1	33
32	Keratoacanthoma Pathobiology in Mouse Models. Diseases (Basel, Switzerland), 2014, 2, 106-119.	2.5	2
33	Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with <i>EGFR</i> . Hepatology, 2013, 57, 120-130.	7.3	52
34	A Transposon-Based Analysis of Gene Mutations Related to Skin Cancer Development. Journal of Investigative Dermatology, 2013, 133, 239-248.	0.7	43
35	Ectopic Expression of Zmiz1 Induces Cutaneous Squamous Cell Malignancies in a Mouse Model of Cancer. Journal of Investigative Dermatology, 2013, 133, 1863-1869.	0.7	26
36	The Stress-Regulated Transcription Factor CHOP Promotes Hepatic Inflammatory Gene Expression, Fibrosis, and Oncogenesis. PLoS Genetics, 2013, 9, e1003937.	3.5	64

#	Article	IF	CITATIONS
37	Identification of Rtl1, a Retrotransposon-Derived Imprinted Gene, as a Novel Driver of Hepatocarcinogenesis. PLoS Genetics, 2013, 9, e1003441.	3.5	76
38	Domesticated transposable element gene products in human cancer. Mobile Genetic Elements, 2013, 3, e26693.	1.8	13
39	Adaptive Immunity Does Not Strongly Suppress Spontaneous Tumors in a Sleeping Beauty Model of Cancer. Journal of Immunology, 2013, 190, 4393-4399.	0.8	30
40	A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model. Blood, 2013, 121, 4355-4358.	1.4	31
41	<i>Sleeping Beauty</i> mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5934-5941.	7.1	201
42	The Wnt pathway is activated in uterine carcinosarcomas when compared to other endometrial histologies. Gynecologic Oncology, 2012, 127, S6-S7.	1.4	0
43	An alternative ZMIZ1 promoter exhibits higher gene expression in epithelial ovarian cancer that is p53-independent. Gynecologic Oncology, 2012, 127, S15-S16.	1.4	0
44	Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482, 529-533.	27.8	376
45	Characterization of transgenic mice expressing cancerâ€associated variants of human <i>NOTCH1</i> . Genesis, 2012, 50, 112-118.	1.6	5
46	Characterization of T-Cell Lymphoblastic Leukemia Genetic Etiology. Blood, 2012, 120, 5128-5128.	1.4	26
47	Nucleotide Bias Observed with a Short SELEX RNA Aptamer Library. Nucleic Acid Therapeutics, 2011, 21, 253-263.	3.6	57
48	Cell of origin strongly influences genetic selection in a mouse model of T-ALL. Blood, 2011, 118, 4646-4656.	1.4	74
49	A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (<i>Apc</i>)-dependent intestinal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5765-5770.	7.1	68
50	Somatic Mutagenesis with a Sleeping Beauty Transposon System Leads to Solid Tumor Formation in Zebrafish. PLoS ONE, 2011, 6, e18826.	2.5	30
51	Novel Molecular and Computational Methods Improve the Accuracy of Insertion Site Analysis in Sleeping Beauty-Induced Tumors. PLoS ONE, 2011, 6, e24668.	2.5	77
52	Sleeping Beauty Models of Cancer. , 2011, , 113-130.		0
53	Transposon-based screens for cancer gene discovery in mouse models. Seminars in Cancer Biology, 2010, 20, 261-268.	9.6	30
54	Aberrant Epithelial–Mesenchymal Hedgehog Signaling Characterizes Barrett's Metaplasia. Gastroenterology, 2010, 138, 1810-1822.e2.	1.3	156

#	Article	IF	CITATIONS
55	Current Applications of Transposons in Mouse Genetics. Methods in Enzymology, 2010, 477, 53-70.	1.0	4
56	A Modified <i>Sleeping Beauty</i> Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice. Cancer Research, 2009, 69, 8150-8156.	0.9	156
57	A Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer. Science, 2009, 323, 1747-1750.	12.6	321
58	Whole-Body <i>Sleeping Beauty</i> Mutagenesis Can Cause Penetrant Leukemia/Lymphoma and Rare High-Grade Glioma without Associated Embryonic Lethality. Cancer Research, 2009, 69, 8429-8437.	0.9	72
59	A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotechnology, 2009, 27, 264-274.	17.5	194
60	A DNA transposon-based approach to validate oncogenic mutations in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19904-19909.	7.1	18
61	Sleeping beauty: a novel cancer gene discovery tool. Human Molecular Genetics, 2006, 15, R75-R79.	2.9	43
62	Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature, 2005, 436, 272-276.	27.8	396
63	Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature, 2005, 436, 221-226.	27.8	465
64	Proviral Tagging Combined with Human Microarray Data Reveals Genes and Pathways That Cooperate in Disease Induction Blood, 2004, 104, 3492-3492.	1.4	0
65	Gene insertion and long-term expression in lung mediated by the sleeping beauty transposon system. Molecular Therapy, 2003, 8, 501-507.	8.2	104
66	Gene transfer into genomes of human cells by the sleeping beauty transposon system. Molecular Therapy, 2003, 8, 108-117.	8.2	328
67	Transposon Mutagenesis of the Mouse Germline. Genetics, 2003, 165, 243-256.	2.9	133
68	Mammalian germ-line transgenesis by transposition. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4495-4499.	7.1	203
69	Transposition and gene disruption in the male germline of the mouse. Genesis, 2001, 30, 82-88.	1.6	200
70	Activation of the Rap1 Guanine Nucleotide Exchange Gene,CalDAG-GEF I, in BXH-2 Murine Myeloid Leukemia. Journal of Biological Chemistry, 2001, 276, 11804-11811.	3.4	61
71	Leukaemia disease genes: large-scale cloning and pathway predictions. Nature Genetics, 1999, 23, 348-353.	21.4	221