Dr Govardhana Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6492328/publications.pdf

Version: 2024-02-01

21 papers

530 citations

16 h-index 752698 20 g-index

21 all docs

21 docs citations

times ranked

21

732 citing authors

#	Article	IF	CITATIONS
1	Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties. Journal of Organic Chemistry, 2016, 81, 640-653.	3.2	58
2	Designâ€ŧoâ€Device Approach Affords Panchromatic Coâ€Sensitized Solar Cells. Advanced Energy Materials, 2019, 9, 1802820.	19.5	40
3	Benzothiadiazole-based organic dyes with pyridine anchors for dye-sensitized solar cells: effect of donor on optical properties. Tetrahedron, 2015, 71, 4203-4212.	1.9	38
4	Development and advancement of iridium(III)-based complexes for photocatalytic hydrogen evolution. Coordination Chemistry Reviews, 2022, 459, 214390.	18.8	38
5	Enhancing photocatalytic hydrogen evolution by intramolecular energy transfer in naphthalimide conjugated porphyrins. Chemical Communications, 2018, 54, 11614-11617.	4.1	36
6	Functional tuning of phenothiazine-based dyes by a benzimidazole auxiliary chromophore: an account of optical and photovoltaic studies. RSC Advances, 2014, 4, 53588-53601.	3.6	35
7	Biâ€anchoring Organic Dyes that Contain Benzimidazole Branches for Dyeâ€Sensitized Solar Cells: Effects of Ï€â€Spacer and Peripheral Donor Groups. Chemistry - an Asian Journal, 2016, 11, 2564-2577.	3.3	32
8	Naphthalimide-porphyrin hybridized graphitic carbon nitride for enhanced photocatalytic hydrogen production. Applied Surface Science, 2020, 499, 143755.	6.1	32
9	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustainable Energy and Fuels, 2018, 2, 2616-2624.	4.9	30
10	Phenothiazine-based bipolar green-emitters containing benzimidazole units: synthesis, photophysical and electroluminescence properties. RSC Advances, 2015, 5, 87416-87428.	3.6	29
11	Self-Assembled Naphthalimide-Substituted Porphyrin Nanowires for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 7040-7046.	5. 0	27
12	Iridium motif linked porphyrins for efficient light-driven hydrogen evolution <i>via</i> triplet state stabilization of porphyrin. Journal of Materials Chemistry A, 2020, 8, 3005-3010.	10.3	26
13	A thiophene bridged naphthalimide–porphyrin complex with enhanced activity and stability in photocatalytic H ₂ evolution. Sustainable Energy and Fuels, 2020, 4, 2675-2679.	4.9	21
14	Cocatalyst-free Photocatalytic Hydrogen Evolution with Simple Heteroleptic Iridium(III) Complexes. ACS Applied Energy Materials, 2021, 4, 3945-3951.	5.1	20
15	Coupling of a new porphyrin photosensitizer and cobaloxime cocatalyst for highly efficient photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 20645-20652.	10.3	20
16	Enhanced cocatalyst-free photocatalytic H ₂ evolution by the synergistic AIE and FRET for an Ir-complex conjugated porphyrin. Journal of Materials Chemistry A, 2022, 10, 4440-4445.	10.3	17
17	Long-lived excited states of platinum(<scp>ii</scp>)-porphyrins for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 13402-13409.	10.3	12
18	<i>^i>β</i> â€Functionalized Imidazoleâ€Fused Porphyrinâ€Donorâ€Based Dyes: Effect of Ï€â€Linker and Acceptor of Optoelectronic and Photovoltaic Properties. ChemistrySelect, 2018, 3, 2558-2564.	on 1.5	11

#	Article	IF	CITATIONS
19	Effect of Donors on Photophysical, Electrochemical and Photovoltaic Properties of Benzimidazoleâ€Branched Dyes. ChemistrySelect, 2017, 2, 2807-2814.	1.5	4
20	Tâ€Shaped Benzimidazole Derivatives as Blueâ€Emitting Materials: The Role of C2 Substituents on Photophysical Properties. Asian Journal of Organic Chemistry, 2018, 7, 729-738.	2.7	4
21	Correction to Cocatalyst-free Photocatalytic Hydrogen Evolution with Simple Heteroleptic Iridium(III) Complexes. ACS Applied Energy Materials, 2021, 4, 6374-6374.	5.1	O