Fei Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6491582/publications.pdf

Version: 2024-02-01

57	11,037	29 h-index	60
papers	citations		g-index
61	61	61	14270 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Research, 2022, 32, 24-37.	12.0	98
2	KAT6A and ENL Form an Epigenetic Transcriptional Control Module to Drive Critical Leukemogenic Gene-Expression Programs. Cancer Discovery, 2022, 12, 792-811.	9.4	33
3	Tumor suppressor CEBPA interacts with and inhibits DNMT3A activity. Science Advances, 2022, 8, eabl5220.	10.3	11
4	Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nature Cell Biology, 2022, 24, 353-363.	10.3	67
5	Dynamic control of chromatin-associated m6A methylation regulates nascent RNA synthesis. Molecular Cell, 2022, 82, 1156-1168.e7.	9.7	69
6	BMP4 drives primed to $na\tilde{A}$ ve transition through PGC-like state. Nature Communications, 2022, 13, 2756.	12.8	2
7	BACH1 recruits NANOG and histone H3 lysine 4 methyltransferase MLL/SET1 complexes to regulate enhancer–promoter activity and maintains pluripotency. Nucleic Acids Research, 2021, 49, 1972-1986.	14.5	24
8	Core transcription regulatory circuitry orchestrates corneal epithelial homeostasis. Nature Communications, 2021, 12, 420.	12.8	32
9	The impact of receptor-binding domain natural mutations on antibody recognition of SARS-CoV-2. Signal Transduction and Targeted Therapy, 2021, 6, 132.	17.1	29
10	Qki regulates myelinogenesis through Srebp2-dependent cholesterol biosynthesis. ELife, 2021, 10, .	6.0	13
11	Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nature Communications, 2021, 12, 3005.	12.8	22
12	RNA m6A meets transposable elements and chromatin. Protein and Cell, 2021, 12, 906-910.	11.0	10
13	KDM5A suppresses PML-RARα target gene expression and APL differentiation through repressing H3K4me2. Blood Advances, 2021, 5, 3241-3253.	5.2	16
14	Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374, 472-478.	12.6	228
15	HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene, 2020, 39, 1335-1346.	5.9	32
16	DNMT3A reads and connects histone H3K36me2 to DNA methylation. Protein and Cell, 2020, 11, 150-154.	11.0	32
17	Tet2 regulates Barx2 expression in undifferentiated and early differentiated mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2020, 533, 1212-1218.	2.1	1
18	RACK7 recognizes H3.3G34R mutation to suppress expression of MHC class II complex components and their delivery pathway in pediatric glioblastoma. Science Advances, 2020, 6, eaba2113.	10.3	25

#	Article	IF	CITATIONS
19	Ribosome 18S m6A Methyltransferase METTL5 Promotes Translation Initiation and Breast Cancer Cell Growth. Cell Reports, 2020, 33, 108544.	6.4	71
20	SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood, 2020, 135, 2271-2285.	1.4	31
21	Human-IgG-Neutralizing Monoclonal Antibodies Block the SARS-CoV-2 Infection. Cell Reports, 2020, 32, 107918.	6.4	148
22	Refined spatial temporal epigenomic profiling reveals intrinsic connection between PRDM9-mediated H3K4me3 and the fate of double-stranded breaks. Cell Research, 2020, 30, 256-268.	12.0	37
23	Mature myelin maintenance requires Qki to coactivate PPARβ-RXRα–mediated lipid metabolism. Journal of Clinical Investigation, 2020, 130, 2220-2236.	8.2	50
24	Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. FASEB Journal, 2019, 33, 13040-13050.	0.5	32
25	The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Research, 2019, 29, 1622-1634.	5.5	62
26	The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Science Advances, 2019, 5, eaat9820.	10.3	95
27	Destabilization of AETFC through C/EBPα-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation. Leukemia, 2019, 33, 1822-1827.	7.2	5
28	Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 890-899.	7.1	18
29	N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical Biology, 2019, 15, 88-94.	8.0	258
30	elF3a mediates HIF1α-dependent glycolytic metabolism in hepatocellular carcinoma cells through translational regulation. American Journal of Cancer Research, 2019, 9, 1079-1090.	1.4	7
31	Design, synthesis and biological activity of 4-(4-benzyloxy)phenoxypiperidines as selective and reversible LSD1 inhibitors. Bioorganic Chemistry, 2018, 78, 7-16.	4.1	12
32	The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. Journal of Biological Chemistry, 2018, 293, 9188-9197.	3.4	49
33	Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Molecular Cell, 2018, 69, 1028-1038.e6.	9.7	618
34	SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Reports, 2018, 25, 1485-1500.e4.	6.4	63
35	H3K14me3 genomic distributions and its regulation by KDM4 family demethylases. Cell Research, 2018, 28, 1118-1120.	12.0	13
36	Repression of human and mouse brain inflammaging transcriptome by broad gene-body histone hyperacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7611-7616.	7.1	55

#	Article	IF	CITATIONS
37	Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature, 2018, 559, 637-641.	27.8	327
38	Optimization of 5-arylidene barbiturates as potent, selective, reversible LSD1 inhibitors for the treatment of acute promyelocytic leukemia. Bioorganic and Medicinal Chemistry, 2018, 26, 4871-4880.	3.0	13
39	Design, synthesis and biological activity of 3-oxoamino-benzenesulfonamides as selective and reversible LSD1 inhibitors. Bioorganic Chemistry, 2017, 72, 182-189.	4.1	18
40	Histone lysine demethylases in mammalian embryonic development. Experimental and Molecular Medicine, 2017, 49, e325-e325.	7.7	56
41	Suppression of Enhancer Overactivation by a RACK7-Histone Demethylase Complex. Cell, 2016, 165, 331-342.	28.9	163
42	Design, synthesis and biological activity of N-(3-substituted-phenyl)benzenesulfonamides as selective and reversible LSD1 inhibitors. Medicinal Chemistry Research, 2016, 25, 2822-2831.	2.4	9
43	ZMYND8 Reads the Dual Histone Mark H3K4me1-H3K14ac to Antagonize the Expression of Metastasis-Linked Genes. Molecular Cell, 2016, 63, 470-484.	9.7	112
44	Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency. Cell Reports, 2016, 17, 997-1007.	6.4	40
45	A primary role of TET proteins in establishment and maintenance of <i>De Novo </i> bivalency at CpG islands. Nucleic Acids Research, 2016, 44, 8682-8692.	14.5	49
46	Finding Missing Proteins from the Epigenetically Manipulated Human Cell with Stringent Quality Criteria. Journal of Proteome Research, 2015, 14, 3645-3657.	3.7	22
47	Histone H3.3 and cancer: A potential reader connection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6814-6819.	7.1	25
48	Genome-Wide Mapping of 5mC and 5hmC Identified Differentially Modified Genomic Regions in Late-Onset Severe Preeclampsia: A Pilot Study. PLoS ONE, 2015, 10, e0134119.	2.5	22
49	BS69/ZMYND11 Reads and Connects Histone H3.3 Lysine 36 Trimethylation-Decorated Chromatin to Regulated Pre-mRNA Processing. Molecular Cell, 2014, 56, 298-310.	9.7	194
50	Mechanisms involved in the regulation of histone lysine demethylases. Current Opinion in Cell Biology, 2008, 20, 316-325.	5.4	232
51	S. pombe LSD1 Homologs Regulate Heterochromatin Propagation and Euchromatic Gene Transcription. Molecular Cell, 2007, 26, 89-101.	9.7	102
52	Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature, 2007, 448, 718-722.	27.8	386
53	A histone H3 lysine 27 demethylase regulates animal posterior development. Nature, 2007, 449, 689-694.	27.8	718
54	Reversal of Histone Lysine Trimethylation by the JMJD2 Family of Histone Demethylases. Cell, 2006, 125, 467-481.	28.9	908

Fei Lan

#	Article	IF	CITATIONS
55	ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 2006, 442, 96-99.	27.8	851
56	Regulation of LSD1 Histone Demethylase Activity by Its Associated Factors. Molecular Cell, 2005, 19, 857-864.	9.7	779
57	Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell, 2004, 119, 941-953.	28.9	3,626