Guillem Genové

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6490910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pericytes regulate the blood–brain barrier. Nature, 2010, 468, 557-561.	13.7	2,214
2	Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Developmental Cell, 2011, 21, 193-215.	3.1	2,123
3	Endothelial-Mural Cell Signaling in Vascular Development and Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 630-638.	1.1	784
4	Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nature Communications, 2020, 11, 3953.	5.8	316
5	Identification of a Core Set of 58 Gene Transcripts With Broad and Specific Expression in the Microvasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1469-1476.	1.1	95
6	Generation and Characterization of <i>rgs5</i> Mutant Mice. Molecular and Cellular Biology, 2008, 28, 2324-2331.	1.1	78
7	Effects of a Disrupted Blood-Brain Barrier on Cholesterol Homeostasis in the Brain. Journal of Biological Chemistry, 2014, 289, 23712-23722.	1.6	78
8	The Absence of Pericytes Does Not Increase the Sensitivity of Tumor Vasculature to Vascular Endothelial Growth Factor-A Blockade. Cancer Research, 2010, 70, 5109-5115.	0.4	77
9	Role of Tumor Pericytes in the Recruitment of Myeloid-Derived Suppressor Cells. Journal of the National Cancer Institute, 2015, 107, djv209.	3.0	57
10	Loss of Regulator of G-Protein Signaling 5 Leads to Neurovascular Protection in Stroke. Stroke, 2018, 49, 2182-2190.	1.0	43
11	<scp>RGS</scp> 5 promotes arterial growth during arteriogenesis. EMBO Molecular Medicine, 2014, 6, 1075-1089.	3.3	41
12	Endogenous Brain Pericytes Are Widely Activated and Contribute to Mouse Glioma Microvasculature. PLoS ONE, 2015, 10, e0123553.	1.1	41
13	The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research. Stem Cell Reports, 2022, 17, 1089-1104.	2.3	41
14	Animal Models of Diabetic Macrovascular Complications: Key Players in the Development of New Therapeutic Approaches. Journal of Diabetes Research, 2015, 2015, 1-14.	1.0	30
15	Regulator of Gâ€protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB Journal, 2019, 33, 8990-8998.	0.2	23
16	Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier. Scientific Reports, 2018, 8, 17462.	1.6	19
17	Vascular dysfunction and increased metastasis of B16F10 melanomas in Shb deficient mice as compared with their wild type counterparts. BMC Cancer, 2015, 15, 234.	1.1	16
18	Increased flux of the plant sterols campesterol and sitosterol across a disrupted blood brain barrier. Steroids, 2015, 99, 183-188.	0.8	14

Guillem Genové

#	Article	IF	CITATIONS
19	Parenchymal pericytes are not the major contributor of extracellular matrix in the fibrotic scar after stroke in male mice. Journal of Neuroscience Research, 2020, 98, 826-842.	1.3	13
20	An Endothelial Gene Signature Score Predicts Poor Outcome in Patients with Endocrine-Treated, Low Genomic Grade Breast Tumors. Clinical Cancer Research, 2016, 22, 2417-2426.	3.2	8
21	Extracellular retention of PDGF-B directs vascular remodeling in mouse hypoxia-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L593-L605.	1.3	8
22	RGS5 Determines Neutrophil Migration in the Acute Inflammatory Phase of Bleomycin-Induced Lung Injury. International Journal of Molecular Sciences, 2021, 22, 9342.	1.8	2
23	Abstract 441: Rgs5 Controls Myogenic Responses of Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0