
David G Lidzey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6490825/publications.pdf Version: 2024-02-01

DAVID C. LIDZEV

#	Article	IF	CITATIONS
1	Gasâ€Assisted Spray Coating of Perovskite Solar Cells Incorporating Sprayed Selfâ€Assembled Monolayers. Advanced Science, 2022, 9, e2104848.	5.6	29
2	Polariton condensation in a microcavity using a highly-stable molecular dye. Journal of Materials Chemistry C, 2022, 10, 4187-4195.	2.7	10
3	Metalâ€Organic Framework Nanosheets as Templates to Enhance Performance in Semiâ€Crystalline Organic Photovoltaic Cells. Advanced Science, 2022, 9, .	5.6	4
4	Controlling PbI ₂ Stoichiometry during Synthesis to Improve the Performance of Perovskite Photovoltaics. Chemistry of Materials, 2021, 33, 554-566.	3.2	13
5	Observation of photon-mode decoupling in a strongly coupled multimode microcavity. Journal of Chemical Physics, 2021, 154, 124309.	1.2	11
6	Progress in Upscaling Organic Photovoltaic Devices. Advanced Energy Materials, 2021, 11, 2100342.	10.2	63
7	Polarization tuning of an H1 organic–inorganic nano-cavity. Journal of Applied Physics, 2021, 129, 203103.	1.1	0
8	Ultralongâ€Range Polaritonâ€Assisted Energy Transfer in Organic Microcavities. Angewandte Chemie - International Edition, 2021, 60, 16661-16667.	7.2	37
9	Ultralongâ€Range Polaritonâ€Assisted Energy Transfer in Organic Microcavities. Angewandte Chemie, 2021, 133, 16797-16803.	1.6	8
10	Untargeted effects in organic exciton–polariton transient spectroscopy: A cautionary tale. Journal of Chemical Physics, 2021, 155, 154701.	1.2	24
11	Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror. Scientific Reports, 2021, 11, 20879.	1.6	11
12	Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. Nature Communications, 2021, 12, 6519.	5.8	32
13	Opticalâ€Mode Structure of Micropillar Microcavities Containing a Fluorescent Conjugated Polymer. Advanced Quantum Technologies, 2020, 3, 1900067.	1.8	3
14	Nano-second exciton-polariton lasing in organic microcavities. Applied Physics Letters, 2020, 117, 123302.	1.5	14
15	Strong Coupling of Organic Dyes Located at the Surface of a Dielectric Slab Microcavity. Journal of Physical Chemistry Letters, 2020, 11, 9893-9900.	2.1	11
16	Potassium iodide reduces the stability of triple-cation perovskite solar cells. RSC Advances, 2020, 10, 40341-40350.	1.7	27
17	Two-Dimensional Organic-Exciton Polariton Lattice Fabricated Using Laser Patterning. ACS Photonics, 2020, 7, 2273-2281.	3.2	23
18	Development of Spray-Coated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 48237-48245.	4.0	88

#	Article	IF	CITATIONS
19	Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5552-5562.	2.5	52
20	Solvent vapour annealing of methylammonium lead halide perovskite: what's the catch?. Journal of Materials Chemistry A, 2020, 8, 10943-10956.	5.2	11
21	Metal–organic framework nanosheets for enhanced performance of organic photovoltaic cells. Journal of Materials Chemistry A, 2020, 8, 6067-6075.	5.2	30
22	Fluorinated solid additives enable high efficiency non-fullerene organic solar cells. Journal of Materials Chemistry A, 2020, 8, 4230-4238.	5.2	47
23	Mechanisms of blueshifts in organic polariton condensates. Communications Physics, 2020, 3, .	2.0	56
24	Pyrene-benzo[1,2,5]thiadiazole based conjugated polymers for application in BHJ solar cells. Journal of Saudi Chemical Society, 2020, 24, 484-491.	2.4	5
25	Fully Spray-Coated Triple-Cation Perovskite Solar Cells. Scientific Reports, 2020, 10, 6610.	1.6	100
26	13.9% Efficiency Ternary Nonfullerene Organic Solar Cells Featuring Low-Structural Order. ACS Energy Letters, 2019, 4, 2378-2385.	8.8	51
27	A hybrid organic–inorganic polariton LED. Light: Science and Applications, 2019, 8, 81.	7.7	30
28	Low-temperature, high-speed reactive deposition of metal oxides for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 2283-2290.	5.2	13
29	Tin(<scp>iv</scp>) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities. Journal of Materials Chemistry C, 2019, 7, 8389-8397.	2.7	34
30	Influences of Non-fullerene Acceptor Fluorination on Three-Dimensional Morphology and Photovoltaic Properties of Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 26194-26203.	4.0	57
31	A flexible back-contact perovskite solar micro-module. Energy and Environmental Science, 2019, 12, 1928-1937.	15.6	35
32	Correlating the electron-donating core structure with morphology and performance of carbon oxygen-bridged ladder-type non-fullerene acceptor based organic solar cells. Nano Energy, 2019, 61, 318-326.	8.2	43
33	Room Temperature Broadband Polariton Lasing from a Dyeâ€Filled Microcavity. Advanced Optical Materials, 2019, 7, 1900163.	3.6	34
34	Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. Energy and Environmental Science, 2019, 12, 1296-1308.	15.6	146
35	Low-dimensional emissive states in non-stoichiometric methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2019, 7, 11104-11116.	5.2	7
36	Ultrasonic spray coating as an approach for large-area polymer OLEDs: The influence of thin film processing and surface roughness on electrical performance. AIP Advances, 2019, 9, .	0.6	14

#	Article	IF	CITATIONS
37	A review of non-fullerene polymer solar cells: from device physics to morphology control. Reports on Progress in Physics, 2019, 82, 036601.	8.1	184
38	Mapping Polymer Molecular Order in the SEM with Secondary Electron Hyperspectral Imaging. Advanced Science, 2019, 6, 1801752.	5.6	19
39	Enhancing the efficiency of PTB7-Th:CO <i>i</i> 8DFIC-based ternary solar cells with versatile third components. Applied Physics Reviews, 2019, 6, .	5.5	20
40	Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells. Joule, 2019, 3, 819-833.	11.7	209
41	<i>In situ</i> simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation. Energy and Environmental Science, 2018, 11, 383-393.	15.6	77
42	Advances in Spray-Cast Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 1977-1984.	2.1	106
43	"Secondary electron spectra of semi-crystalline polymers – A novel polymer characterisation tool?â€. Journal of Electron Spectroscopy and Related Phenomena, 2018, 222, 95-105.	0.8	9
44	Contrasting Effects of Energy Transfer in Determining Efficiency Improvements in Ternary Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704212.	7.8	53
45	Degradation of inverted architecture <scp>CH</scp> ₃ <scp>NH</scp> ₃ PbI _{3â€} <scp>_xC</scp> I< perovskite solar cells due to trapped moisture. Energy Science and Engineering, 2018, 6, 35-46.	sub _{2.}% <td>o> 21</td>	o> 21
46	Control over Energy Transfer between Fluorescent BODIPY Dyes in a Strongly Coupled Microcavity. ACS Photonics, 2018, 5, 258-266.	3.2	77
47	Localized effect of PbI ₂ excess in perovskite solarÂcells probed by high-resolution chemical–optoelectronic mapping. Journal of Materials Chemistry A, 2018, 6, 23010-23018.	5.2	47
48	High-Efficiency Spray-Coated Perovskite Solar Cells Utilizing Vacuum-Assisted Solution Processing. ACS Applied Materials & Interfaces, 2018, 10, 39428-39434.	4.0	74
49	Generation of Anti-Stokes Fluorescence in a Strongly Coupled Organic Semiconductor Microcavity. ACS Photonics, 2018, 5, 4343-4351.	3.2	21
50	Effect of fullerene acceptor on the performance of solar cells based on PffBT4T-2OD. Physical Chemistry Chemical Physics, 2018, 20, 19023-19029.	1.3	14
51	Correlating Nanoscale Morphology with Device Performance in Conventional and Inverted PffBT4T-2OD:PC ₇₁ BM Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 3505-3512.	2.5	7
52	Highâ€Performance Multilayer Encapsulation for Perovskite Photovoltaics. Advanced Energy Materials, 2018, 8, 1801234.	10.2	68
53	Strong coupling in a microcavity containing \hat{I}^2 -carotene. Optics Express, 2018, 26, 3320.	1.7	10
54	High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nature Communications, 2018, 9, 2926.	5.8	166

#	Article	IF	CITATIONS
55	Current Status of Outdoor Lifetime Testing of Organic Photovoltaics. Advanced Science, 2018, 5, 1800434.	5.6	73
56	Correlating Threeâ€dimensional Morphology With Function in PBDBâ€T:ITâ€M Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800114.	3.1	49
57	An X-ray scattering and electron microscopy study of methylammonium bismuth perovskites for solar cell applications. Journal of Materials Research, 2017, 32, 1888-1898.	1.2	3
58	Lévy Defects in Matrix-Immobilized J Aggregates: Tracing Intra-and Intersegmental Exciton Relaxation. Journal of Physical Chemistry Letters, 2017, 8, 547-552.	2.1	10
59	Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2. Nature Communications, 2017, 8, 14097.	5.8	53
60	Optimized organometal halide perovskite solar cell fabrication through control of nanoparticle crystal patterning. Journal of Materials Chemistry C, 2017, 5, 2352-2359.	2.7	12
61	Comparative indoor and outdoor stability measurements of polymer based solar cells. Scientific Reports, 2017, 7, 1305.	1.6	32
62	Nanoscale Mapping of Bromide Segregation on the Cross Sections of Complex Hybrid Perovskite Photovoltaic Films Using Secondary Electron Hyperspectral Imaging in a Scanning Electron Microscope. ACS Omega, 2017, 2, 2126-2133.	1.6	16
63	Understanding and controlling morphology evolution via DIO plasticization in PffBT4T-2OD/PC71BM devices. Scientific Reports, 2017, 7, 44269.	1.6	47
64	Strong Exciton–Photon Coupling in a Nanographene Filled Microcavity. Nano Letters, 2017, 17, 5521-5525.	4.5	30
65	Hybrid organic-inorganic polariton laser. Scientific Reports, 2017, 7, 11377.	1.6	38
66	Polariton Condensates: A Yellow Polariton Condensate in a Dye Filled Microcavity (Advanced Optical) Tj ETQq0	0 0 ₃ gBT /(Overlock 10 T
67	Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Scientific Reports, 2017, 7, 7962.	1.6	69
68	A Yellow Polariton Condensate in a Dye Filled Microcavity. Advanced Optical Materials, 2017, 5, 1700203.	3.6	75
69	A Nanophotonic Structure Containing Living Photosynthetic Bacteria. Small, 2017, 13, 1701777.	5.2	46
70	Efficient perovskite photovoltaic devices using chemically doped PCDTBT as a hole-transport material. Journal of Materials Chemistry A, 2017, 5, 15714-15723.	5.2	29
71	Intermolecular states in organic dye dispersions: excimers vs. aggregates. Journal of Materials Chemistry C, 2017, 5, 8380-8389.	2.7	60
72	Novel organic photovoltaic polymer blends: A rapid, 3-dimensional morphology analysis using backscattered electron imaging in the scanning electron microscope. Solar Energy Materials and Solar Cells, 2017, 160, 182-192.	3.0	12

#	Article	IF	CITATIONS
73	Lightâ€Soakingâ€Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Lowâ€Temperatureâ€Processed TiO ₂ Electronâ€Transport Layer. Advanced Materials, 2017, 29, 1604044.	11.1	68
74	Pyrene-benzothiadiazole-based copolymers for application in photovoltaic devices. Polymers for Advanced Technologies, 2017, 28, 193-200.	1.6	8
75	Fabricating high performance conventional and inverted polymer solar cells by spray coating in air. Vacuum, 2017, 139, 154-158.	1.6	13
76	Solution modification of PEDOT:PSS inks for ultrasonic spray coating. Organic Electronics, 2017, 41, 245-250.	1.4	17
77	Thermally Stable Solution Processed Vanadium Oxide as a Hole Extraction Layer in Organic Solar Cells. Materials, 2016, 9, 235.	1.3	19
78	High efficiency arrays of polymer solar cells fabricated by sprayâ€coating in air. Progress in Photovoltaics: Research and Applications, 2016, 24, 275-282.	4.4	27
79	Polymer Light Emitting Diodes Powered via Paper-Mounted Electronics. Journal of Display Technology, 2016, 12, 583-588.	1.3	9
80	Plasmonic gold nanodiscs fabricated into a photonic-crystal nanocavity. Nanotechnology, 2016, 27, 225203.	1.3	6
81	Mapping Morphological and Structural Properties of Lead Halide Perovskites by Scanning Nanofocus XRD. Advanced Functional Materials, 2016, 26, 8221-8230.	7.8	27
82	Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye. Advanced Optical Materials, 2016, 4, 1615-1623.	3.6	61
83	Spray ast Multilayer Organometal Perovskite Solar Cells Fabricated in Air. Advanced Energy Materials, 2016, 6, 1600994.	10.2	130
84	PCDTBT based solar cells: one year of operation under real-world conditions. Scientific Reports, 2016, 6, 21632.	1.6	52
85	Improved efficiency in organic solar cells via conjugated polyelectrolyte additive in the hole transporting layer. Journal of Materials Chemistry C, 2016, 4, 10722-10730.	2.7	8
86	Polaritons: Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye (Advanced Optical Materials 10/2016). Advanced Optical Materials, 2016, 4, 1614-1614.	3.6	1
87	Preparation and photovoltaic properties of pyrene-thieno[3,4-c]pyrrole-4,6-dione-based donor-acceptor polymers. European Polymer Journal, 2016, 85, 225-235.	2.6	5
88	Grain rotation and lattice deformation during perovskite spray coating and annealing probed <i>in situ</i> by GI-WAXS. CrystEngComm, 2016, 18, 5448-5455.	1.3	29
89	Monitoring the Formation of a CH ₃ NH ₃ PbI _{3–} <i>_x</i> Cl <i>_x</i> Perovskite during Thermal Annealing Using Xâ€Ray Scattering. Advanced Functional Materials, 2016, 26, 4934-4942.	7.8	63
90	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	8.1	107

#	Article	IF	CITATIONS
91	Indium-free multilayer semi-transparent electrodes for polymer solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 600-607.	3.0	18
92	Dependence on material choice of degradation of organic solar cells following exposure to humid air. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 216-224.	2.4	27
93	Direct evidence of Rabi oscillations and antiresonance in a strongly coupled organic microcavity. Physical Review B, 2015, 91, .	1.1	8
94	Band energy control of molybdenum oxide by surface hydration. Applied Physics Letters, 2015, 107, .	1.5	26
95	Polymer-based solar cells having an active area of 1.6 cm2 fabricated via spray coating. APL Materials, 2015, 3, .	2.2	9
96	Application of low-voltage backscattered electron imaging to the mapping of organic photovoltaic blend morphologies. Journal of Physics: Conference Series, 2015, 644, 012017.	0.3	2
97	The role of the hole-extraction layer in determining the operational stability of a polycarbazole:fullerene bulk-heterojunction photovoltaic device. Applied Physics Letters, 2015, 106, .	1.5	25
98	Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy. Nature Communications, 2015, 6, 6928.	5.8	56
99	Vertical stratification and its impact on device performance in a polycarbazole based copolymer solar cells. Journal of Materials Chemistry C, 2015, 3, 4007-4015.	2.7	25
100	The effect of residual palladium catalyst on the performance and stability of PCDTBT:PC70BM organic solar cells. Organic Electronics, 2015, 27, 266-273.	1.4	46
101	Strong Coupling in Organic and Hybrid-Semiconductor Microcavity Structures. , 2015, , 243-273.		9
102	Impact of fluorine substitution upon the photovoltaic properties of benzothiadiazole-fluorene alternate copolymers. RSC Advances, 2015, 5, 46386-46394.	1.7	27
103	Triisopropylsilylacetylene-functionalised anthracene-alt-benzothiadiazole copolymers for application in bulk heterojunction solar cells. RSC Advances, 2015, 5, 101607-101615.	1.7	4
104	Morphology Development in Amorphous Polymer:Fullerene Photovoltaic Blend Films During Solution Casting. Advanced Functional Materials, 2014, 24, 659-667.	7.8	55
105	Solution processed nickel oxide anodes for organic photovoltaic devices. Applied Physics Letters, 2014, 104, .	1.5	39
106	Silicon photonic crystals: light emission, modulation and detection. , 2014, , .		0
107	The fabrication of polyfluorene and polycarbazole-based photovoltaic devices using an air-stable process route. Applied Physics Letters, 2014, 105, 223302.	1.5	12
108	Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode. Nature Communications, 2014, 5, 5561.	5.8	102

#	Article	IF	CITATIONS
109	A ladder of polariton branches formed by coupling an organic semiconductor exciton to a series of closely spaced cavity-photon modes. Applied Physics Letters, 2014, 104, 191108.	1.5	18
110	Development of Community Led Renewable Energy Projects. Materials Research Society Symposia Proceedings, 2014, 1657, 17.	0.1	0
111	Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nature Materials, 2014, 13, 712-719.	13.3	340
112	Organic photovoltaic devices incorporating a molybdenum oxide hole-extraction layer deposited by spray-coating from an ammonium molybdate tetrahydrate precursor. Organic Electronics, 2014, 15, 692-700.	1.4	26
113	Impact of dithienyl or thienothiophene units on the optoelectronic and photovoltaic properties of benzo[1,2,5]thiadiazole based donor–acceptor copolymers for organic solar cell devices. RSC Advances, 2014, 4, 43142-43149.	1.7	13
114	A chemical sensor based on a photonic-crystal L3 nanocavity defined in a silicon-nitride membrane. Journal of Materials Chemistry C, 2014, 2, 8700-8706.	2.7	8
115	Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy and Environmental Science, 2014, 7, 2944-2950.	15.6	657
116	Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics. Scientific Reports, 2014, 4, 5286.	1.6	61
117	Bulk Heterojunction Morphology Control and Characterization. , 2014, , 317-366.		2
118	Fluoreneâ€Based Coâ€polymer with High Hole Mobility and Device Performance in Bulk Heterojunction Organic Solar Cells. Macromolecular Rapid Communications, 2013, 34, 1157-1162.	2.0	24
119	Photonic Crystal Nanocavities Containing Plasmonic Nanoparticles Assembled Using a Laserâ€Printing Technique. Advanced Optical Materials, 2013, 1, 946-951.	3.6	16
120	Anthracene-based donor–acceptor low band gap polymers for application in solar cells. Chemical Communications, 2013, 49, 2252.	2.2	41
121	Correlating molecular morphology with optoelectronic function in solar cells based on low band-gap copolymer:fullerene blends. Journal of Materials Chemistry C, 2013, 1, 7266.	2.7	67
122	Selenophene vs. thiophene in benzothiadiazole-based low energy gap donor–acceptor polymers for photovoltaic applications. Journal of Materials Chemistry A, 2013, 1, 5165.	5.2	73
123	Fabricating High Performance, Donor–Acceptor Copolymer Solar Cells by Spray oating in Air. Advanced Energy Materials, 2013, 3, 505-512.	10.2	85
124	Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer. Applied Physics Letters, 2013, 102, 183303.	1.5	25
125	Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED. Advanced Optical Materials, 2013, 1, 503-509.	3.6	42
126	The role of dynamic measurements in correlating structure with optoelectronic properties in polymer : fullerene bulk-heterojunction solar cells. Reports on Progress in Physics, 2013, 76, 022501.	8.1	41

#	Article	IF	CITATIONS
127	The Influence of MoO _x Anode Stoicheometry on the Performance of Bulk Heterojunction Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 903-908.	10.2	20
128	Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide. Optics Letters, 2013, 38, 154.	1.7	48
129	Strongly Coupled Hybrid Frenkel/Wannier-Mott Exciton Polaritons in a High Q Microcavity. , 2013, , .		0
130	Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities. Physical Review B, 2013, 88, .	1.1	38
131	Highly efficient coupling between a monolithically integrated photonic crystal cavity and a bus waveguide. , 2012, , .		0
132	Highly efficient coupling between a nanocavity and monolithic bus waveguide. , 2012, , .		0
133	Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity. , 2012, , .		1
134	Phonon-driven resonantly enhanced polariton luminescence in organic microcavities. , 2012, , .		1
135	Micrometer and Nanometer Scale Photopatterning of Proteins on Glass Surfaces by Photo-degradation of Films Formed from Oligo(Ethylene Glycol) Terminated Silanes. Biointerphases, 2012, 7, 54.	0.6	12
136	Rationalizing Phase Transitions with Thermal Annealing Temperatures for P3HT:PCBM Organic Photovoltaic Devices. Macromolecules, 2012, 45, 1499-1508.	2.2	68
137	Competition between substrate-mediated π-π stacking and surface-mediated Tg depression in ultrathin conjugated polymer films. European Physical Journal E, 2012, 35, 9807.	0.7	34
138	Correlating Structure with Function in Thermally Annealed PCDTBT:PC ₇₀ BM Photovoltaic Blends. Advanced Functional Materials, 2012, 22, 1399-1408.	7.8	131
139	Optimising the efficiency of carbazole co-polymer solar-cells by control over the metal cathode electrode. Organic Electronics, 2012, 13, 1401-1408.	1.4	26
140	Large area nanopatterning of alkylphosphonate self-assembled monolayers on titanium oxide surfaces by interferometric lithography. Nanoscale, 2011, 3, 2511.	2.8	18
141	Structure of films of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) crosslinked with glycerol. Journal of Materials Chemistry, 2011, 21, 19324.	6.7	12
142	A Phase Diagram of the P3HT:PCBM Organic Photovoltaic System: Implications for Device Processing and Performance. Macromolecules, 2011, 44, 2908-2917.	2.2	109
143	Spectroscopy and Single-Molecule Emission of a Fluorene-Terthiophene Oligomer. Journal of Physical Chemistry B, 2011, 115, 12028-12035.	1.2	6
144	Imaging the Bulk Nanoscale Morphology of Organic Solar Cell Blends Using Helium Ion Microscopy. Nano Letters, 2011, 11, 4275-4281.	4.5	28

#	Article	IF	CITATIONS
145	Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Physical Review B, 2011, 84, .	1.1	36
146	Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Physical Review B, 2011, 83, .	1.1	116
147	A novel 2,7-linked carbazole based "double cable―polymer with pendant perylene diimide functional groups: preparation, spectroscopy and photovoltaic properties. Journal of Materials Chemistry, 2011, 21, 851-862.	6.7	21
148	Carbazole and thienyl benzo[1,2,5]thiadiazole based polymers with improved open circuit voltages and processability for application in solar cells. Journal of Materials Chemistry, 2011, 21, 13649.	6.7	89
149	A regioregular head to tail thiophene based "double-cable―polymer with pendant anthraquinone functional groups: Preparation, spectroscopy and photovoltaic properties. Solar Energy Materials and Solar Cells, 2011, 95, 1723-1730.	3.0	9
150	Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene:Fullerene Solar Cells During Thermal Annealing. Advanced Functional Materials, 2011, 21, 1383-1390.	7.8	109
151	Vibrationally Assisted Polaritonâ€Relaxation Processes in Strongly Coupled Organicâ€Semiconductor Microcavities. Advanced Functional Materials, 2011, 21, 3691-3696.	7.8	126
152	The Nanoscale Morphology of a PCDTBT:PCBM Photovoltaic Blend. Advanced Energy Materials, 2011, 1, 499-504.	10.2	99
153	Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities. Applied Physics Letters, 2011, 99, 143303.	1.5	46
154	Hole injection in tri-arylamine containing polyfluorene co-polymer devices with molybdenum oxide contacts. Journal of Applied Physics, 2011, 109, 084509.	1.1	19
155	Stability of X-Ray Detectors Based on Organic Photovoltaic Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1770-1775.	1.9	22
156	Depletion of PCBM at the Cathode Interface in P3HT/PCBM Thin Films as Quantified via Neutron Reflectivity Measurements. Advanced Materials, 2010, 22, 2444-2447.	11.1	165
157	A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye. Applied Physics Letters, 2010, 97, .	1.5	12
158	Role of intramolecular dynamics on intermolecular coupling in cyanine dye. Physical Review B, 2010, 81, .	1.1	11
159	Exciton localization in disordered poly(3-hexylthiophene). Journal of Chemical Physics, 2010, 133, 044504.	1.2	46
160	The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter, 2010, 6, 4128.	1.2	121
161	An Optical Nanocavity Incorporating a Fluorescent Organic Dye Having a High Quality Factor. ACS Nano, 2010, 4, 3039-3044.	7.3	16
162	The optical properties of hybrid organic-inorganic L3 nanocavities. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 215.	0.9	13

#	Article	IF	CITATIONS
163	A Characterization of the Raman Modes in a J-Aggregate-Forming Dye: A Comparison between Theory and Experiment. Journal of Physical Chemistry A, 2010, 114, 11920-11927.	1.1	30
164	Aryl amine substituted low energy gap carbazole polymers: preparation and photovoltaic properties. Journal of Materials Chemistry, 2010, 20, 6990.	6.7	11
165	High-speed electroluminescence modulation of a conjugated-polymer light emitting diode. Applied Physics Letters, 2009, 94, .	1.5	33
166	Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers. Journal of Chemical Physics, 2009, 130, 044903.	1.2	23
167	Fabrication and optimization of P3HT:PCBM organic photovoltaic devices. Proceedings of SPIE, 2009, , .	0.8	5
168	The Impact of Interfacial Mixing on Förster Transfer at Conjugated Polymer Heterojunctions. Advanced Functional Materials, 2009, 19, 157-163.	7.8	22
169	Phenylenevinylene Block Copolymers via Ringâ€Opening Metathesis Polymerization. Macromolecular Rapid Communications, 2009, 30, 1889-1892.	2.0	36
170	Alternating 2,7- and 3,6-linked carbazole copolymers as wide band gap energy transfer donors. Thin Solid Films, 2009, 517, 2840-2844.	0.8	16
171	Detecting 6MV X-rays using an organic photovoltaic device. Organic Electronics, 2009, 10, 1170-1173.	1.4	29
172	Photopatterning, Etching, and Derivatization of Self-Assembled Monolayers of Phosphonic Acids on the Native Oxide of Titanium. Langmuir, 2009, 25, 10746-10753.	1.6	41
173	Temporal dynamics of polaritons in a stronglycoupled organic-semiconductor microcavity. Springer Series in Chemical Physics, 2009, , 283-285.	0.2	0
174	Narrow Energy Gap Polymers with Absorptions up to 1 200 nm and their Photovoltaic Properties. Macromolecular Rapid Communications, 2008, 29, 1804-1809.	2.0	52
175	Observation of the <i>β</i> â€Phase in Two Shortâ€Chain Oligofluorenes. Advanced Functional Materials, 2008, 18, 600-606.	7.8	44
176	Optical nanolithography using a scanning near-field probe with an integrated light source. Applied Physics Letters, 2008, 93, 213103.	1.5	29
177	Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures. Physical Review B, 2008, 77, .	1.1	44
178	A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials. New Journal of Physics, 2008, 10, 065011.	1.2	6
179	Raman spectroscopy of fluorene oligomers in the α-, β- and γ-phases. Journal of Physics Condensed Matter, 2008, 20, 125213.	0.7	23
180	Mapping exciton quenching in photovoltaic-applicable polymer blends using time-resolved scanning near-field optical microscopy. Journal of Applied Physics, 2008, 103, .	1.1	15

#	Article	IF	CITATIONS
181	Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities. Physical Review B, 2008, 78, .	1.1	32
182	Improving the light extraction efficiency of polymer LEDs using microcavities and photonic crystals. Proceedings of SPIE, 2007, 6655, 241.	0.8	2
183	Refractive index dependence of L3 photonic crystal nano-cavities. Optics Express, 2007, 15, 14299.	1.7	19
184	Third Harmonic Generation measurements on organic semiconductor films. AIP Conference Proceedings, 2007, , .	0.3	0
185	Imaging the Fluorescence Decay Lifetime of a Conjugated-Polymer Blend By Using a Scanning Near-Field Optical Microscope. Advanced Materials, 2007, 19, 107-111.	11.1	49
186	A New Class of Blue-Emitting Materials for LED Applications: TriarylamineN-Functionalised 2,7-Linked Carbazole Polymers. Macromolecular Rapid Communications, 2007, 28, 1155-1160.	2.0	36
187	Optical strong coupling in microcavities containing J-aggregates absorbing in near-infrared spectral range. Organic Electronics, 2007, 8, 120-126.	1.4	29
188	A polymer light-emitting diode as an optical communication light source. Organic Electronics, 2007, 8, 621-624.	1.4	7
189	Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities. Superlattices and Microstructures, 2007, 41, 289-292.	1.4	15
190	Ultrafast polariton dynamics in strongly coupled zinc porphyrin microcavities at room temperature. Physical Review B, 2006, 74, .	1.1	23
191	Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Physical Review B, 2006, 74, .	1.1	64
192	Preparation and Properties of 4-Dialkylamino-phenylN-Functionalized 2,7-Linked Carbazole Polymers. Chemistry of Materials, 2006, 18, 5789-5797.	3.2	43
193	Improving the light extraction efficiency of polymeric light emitting diodes using two-dimensional photonic crystals. Organic Electronics, 2006, 7, 222-228.	1.4	45
194	Improving the light extraction efficiency of red-emitting conjugated polymer light emitting diodes. Journal of Applied Physics, 2006, 99, 054505.	1.1	17
195	The interplay between the optical and electronic properties of light-emitting-diode applicable conjugated polymer blends and their phase-separated morphology. Organic Electronics, 2005, 6, 35-45.	1.4	53
196	Laser-assisted patterning of conjugated polymer light emitting diodes. Organic Electronics, 2005, 6, 221-228.	1.4	39
197	New organic materials and microcavity structures for strong exciton-photon coupling. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3899-3902.	0.8	6
198	Surface segregation and self-stratification in blends of spin-cast polyfluorene derivatives. Journal of Physics Condensed Matter, 2005, 17, 1319-1328.	0.7	51

#	Article	IF	CITATIONS
199	Mapping the Fluorescence Decay Lifetime of a Conjugated Polymer in a Phase-Separated Blend Using a Scanning Near-Field Optical Microscope. Nano Letters, 2005, 5, 2232-2237.	4.5	68
200	Nanoscale Conjugated-Polymer Light-Emitting Diodes. Nano Letters, 2005, 5, 67-71.	4.5	140
201	Tuning the exciton-photon coupling in a strongly coupled organic microcavity containing an optical wedge. Applied Physics Letters, 2004, 85, 5848-5850.	1.5	10
202	Ultrafast measurements of vibrational relaxation in the conjugated polymer poly(9,9-dioctylfluorene). Applied Physics Letters, 2004, 85, 3080-3082.	1.5	8
203	Understanding the Origin of the 535 nm Emission Band in Oxidized Poly(9,9-dioctylfluorene): The Essential Role of Inter-Chain/Inter-Segment Interactions. Advanced Functional Materials, 2004, 14, 765-781.	7.8	247
204	Imaging Joule heating in a conjugated-polymer light-emitting diode using a scanning thermal microscope. Applied Physics Letters, 2004, 84, 4890-4892.	1.5	22
205	Experimental Evidence for Exciton Scaling Effects in Self-Assembled Molecular Wires. Physical Review Letters, 2004, 93, 257401.	2.9	24
206	Strong Optical Coupling in Organic Semiconductor Microcavities. Thin Films and Nanostructures, 2003, 31, 355-402.	0.1	4
207	Phase separation in polyfluorene – polymethylmethacrylate blends studied using UV nearâ€field microscopy. Journal of Microscopy, 2003, 209, 188-193.	0.8	33
208	Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends. Nature Materials, 2003, 2, 616-621.	13.3	178
209	Cavity polaritons in microcavities containing disordered organic semiconductors. Physical Review B, 2003, 67, .	1.1	276
210	Cavity Polaritons in Organic Materials. , 2003, , 291-315.		2
211	Photoluminescence emission and Raman scattering polarization in birefringent organic microcavities in the strong coupling regime. Journal of Applied Physics, 2003, 93, 5003-5007.	1.1	11
212	Exciton migration in \hat{l}^2 -phase poly(9,9-dioctylfluorene). Physical Review B, 2003, 67, .	1.1	232
213	Strong coupling in high-finesse organic semiconductor microcavities. Applied Physics Letters, 2003, 83, 5377-5379.	1.5	36
214	Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity. Applied Physics Letters, 2002, 80, 4088-4090.	1.5	38
215	Balancing electron and hole currents in single layer poly(9,9-dioctylfluorene) light-emitting diodes. , 2002, , .		6
216	Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation. Physical Review B, 2002, 65, .	1.1	93

#	Article	IF	CITATIONS
217	The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly(9, 9-dioctylfluorene). Journal of Physics Condensed Matter, 2002, 14, 9975-9986.	0.7	141
218	Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Applied Physics Letters, 2002, 81, 3519-3521.	1.5	182
219	Origin of electrophosphorescence from a doped polymer light emitting diode. Physical Review B, 2001, 63, .	1.1	199
220	High brightness and efficiency green light-emitting diodes based on fluorene-containing conjugated polymers and associated blends. , 2001, 4105, 390.		2
221	Electrophosphoresence from a doped polymer light emitting diode. Synthetic Metals, 2001, 116, 379-383.	2.1	136
222	A study of the different structural phases of the polymer poly(9,9′-dioctyl fluorene) using Raman spectroscopy. Synthetic Metals, 2001, 116, 217-221.	2.1	56
223	Ultrafast Förster transfer dynamics in tetraphenylporphyrin doped poly(9,9-dioctylfluorene). Chemical Physics Letters, 2001, 335, 27-33.	1.2	66
224	Completely polarized photoluminescence emission from a microcavity containing an aligned conjugated polymer. Chemical Physics Letters, 2001, 341, 219-224.	1.2	37
225	Raman scattering in strongly coupled organic semiconductor microcavities. Physical Review B, 2001, 63, .	1.1	50
226	Opal photonic crystals infiltrated with chalcogenide glasses. Applied Physics Letters, 2001, 78, 4094-4096.	1.5	16
227	Enhanced performance of pulse driven small area polyfluorene light emitting diodes. Applied Physics Letters, 2001, 79, 171-173.	1.5	81
228	Improving efficiency by balancing carrier transport in poly(9,9-dioctylfluorene) light-emitting diodes using tetraphenylporphyrin as a hole-trapping, emissive dopant. Applied Physics Letters, 2001, 79, 3872-3874.	1.5	64
229	Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin-Doped Poly(9,9-dioctylfluorene) Light-Emitting Diodes. Advanced Materials, 2000, 12, 58-62.	11.1	291
230	Spectral properties of resonant-cavity, polyfluorene light-emitting diodes. Applied Physics Letters, 2000, 77, 1262-1264.	1.5	55
231	Photophysics of a poly(phenylenevinylene) with alternatingmeta-phenylene andpara-phenylene rings. Physical Review B, 2000, 62, 15718-15723.	1.1	13
232	Photon-Mediated Hybridization of Frenkel Excitons in Organic Semiconductor Microcavities. Science, 2000, 288, 1620-1623.	6.0	220
233	Strong Coupling in Organic Semiconductor Microcavities Based on J-Aggregates. , 2000, , 357-370.		1
234	An ultrafast spectroscopy study of stimulated emission in poly(9,9-dioctylfluorene) films and microcavities. Applied Physics Letters, 1999, 74, 2767-2769.	1.5	40

#	Article	IF	CITATIONS
235	Device degradation of polymer light emitting diodes studied by electroabsorption measurements. Applied Physics Letters, 1999, 75, 2144-2146.	1.5	32
236	Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities. Physical Review Letters, 1999, 82, 3316-3319.	2.9	311
237	Strong exciton–photon coupling in an organic semiconductor microcavity. Nature, 1998, 395, 53-55.	13.7	768
238	Direct Determination of the Exciton Binding Energy of Conjugated Polymers Using a Scanning Tunneling Microscope. Physical Review Letters, 1998, 81, 1082-1085.	2.9	278
239	Bulk limited conduction in electroluminescent polymer devices. Journal of Applied Physics, 1998, 84, 6737-6746.	1.1	118
240	Mapping the confined optical field in a microcavity via the emission from a conjugated polymer. Applied Physics Letters, 1997, 71, 744-746.	1.5	19
241	Efficient multilayer electroluminescence devices with poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) as the emissive layer. Journal of Applied Physics, 1997, 82, 2662-2670.	1.1	102
242	Electroluminescence from a soluble poly(p-phenylenevinylene) derivative generated using a scanning tunneling microscope. Applied Physics Letters, 1997, 71, 2008-2010.	1.5	27
243	Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes. Journal of Applied Physics, 1997, 82, 6326-6342.	1.1	474
244	Electroluminescence in polymer films. Nature, 1997, 386, 135-135.	13.7	58
245	<title>Charge trapping in polymer electroluminescent devices</title> . , 1997, , .		0
246	Use of poly(phenyl quinoxaline) as an electron transport material in polymer lightâ€emitting diodes. Applied Physics Letters, 1996, 69, 881-883.	1.5	220
247	Photoprocessed and micropatterned conjugated polymer LEDs. Synthetic Metals, 1996, 82, 141-148.	2.1	116
248	Electroluminescence from a conjugated polymer microcavity structure. Applied Physics Letters, 1995, 67, 1355-1357.	1.5	78
249	A Critical Analysis of the Use of Radiation Inactivation to Measure the Mass of Protein. Radiation Research, 1995, 143, 181.	0.7	10
250	Two-Wavelength switching of luciferase activity using caged compounds. Advanced Materials for Optics and Electronics, 1994, 4, 349-354.	0.5	3
251	Prototype pattern recognition devices using firefly luciferase. Advanced Materials for Optics and Electronics, 1994, 4, 381-386.	0.5	2
	Lieutionics, 1994, 4, 501-500.		

#	Article	IF	CITATIONS
253	Investigation of Perovskite Solar Cells Homogeneity and Defects by Complementary High-Resolution Mapping Techniques. , 0, , .		0