Stephen W Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6490574/publications.pdf Version: 2024-02-01

	10389	19190
15,134	72	118
citations	h-index	g-index
167	167	14672
docs citations	times ranked	citing authors
	15,134 citations 167 docs citations	15,13472citationsh-index167167docs citationstimes ranked

#	Article	IF	CITATIONS
1	Allele-specific gene expression can underlie altered transcript abundance in zebrafish mutants. ELife, 2022, 11, .	6.0	9
2	Loss of <i>slc39a14</i> causes simultaneous manganese hypersensitivity and deficiency in zebrafish. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	4
3	A Structural Atlas of the Developing Zebrafish Telencephalon Based on Spatially-Restricted Transgene Expression. Frontiers in Neuroanatomy, 2022, 16, .	1.7	4
4	A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. ELife, 2021, 10, .	6.0	131
5	The zebrafish issue: 25â€years on. Development (Cambridge), 2021, 148, .	2.5	14
6	Tissue-Specific Requirement for the GINS Complex During Zebrafish Development. Frontiers in Cell and Developmental Biology, 2020, 8, 373.	3.7	5
7	De Novo Missense Variants in FBXW11 Cause Diverse Developmental Phenotypes Including Brain, Eye, and Digit Anomalies. American Journal of Human Genetics, 2019, 105, 640-657.	6.2	31
8	Looking to the future of zebrafish as a model to understand the genetic basis of eye disease. Human Genetics, 2019, 138, 993-1000.	3.8	15
9	Characterization of paralogous uncx transcription factor encoding genes in zebrafish. Gene: X, 2019, 721, 100011.	2.3	11
10	Abrogation of Stem Loop Binding Protein (Slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PLoS ONE, 2019, 14, e0211073.	2.5	9
11	Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. ELife, 2019, 8, .	6.0	21
12	Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry. ELife, 2019, 8, .	6.0	14
13	Developmentally regulated Tcf7l2 splice variants mediate transcriptional repressor functions during eye formation. ELife, 2019, 8, .	6.0	8
14	Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nature Neuroscience, 2018, 21, 24-28.	14.8	138
15	The α2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α2δ-1. Cell Reports, 2018, 25, 1610-1621.e5.	6.4	40
16	Left/right asymmetric collective migration of parapineal cells is mediated by focal FGF signaling activity in leading cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9812-E9821.	7.1	16
17	Cell Behaviors during Closure of the Choroid Fissure in the Developing Eye. Frontiers in Cellular Neuroscience, 2018, 12, 42.	3.7	43
18	Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish. Scientific Reports, 2017, 7, 44777.	3.3	30

#	Article	IF	CITATIONS
19	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	3.5	255
20	Afferent Connectivity of the Zebrafish Habenulae. Frontiers in Neural Circuits, 2016, 10, 30.	2.8	84
21	Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nature Communications, 2016, 7, 11601.	12.8	233
22	Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron, 2016, 89, 725-733.	8.1	170
23	Transcription factor 7-like 1 is involved in hypothalamo–pituitary axis development in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E548-57.	7.1	47
24	Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish. Development (Cambridge), 2016, 143, 1087-98.	2.5	26
25	Development of social behavior in young zebrafish. Frontiers in Neural Circuits, 2015, 9, 39.	2.8	209
26	Opposing Shh and Fgf signals initiate nasotemporal patterning of the retina. Development (Cambridge), 2015, 142, 3933-42.	2.5	46
27	Yap and Taz regulate retinal pigment epithelial cell fate. Development (Cambridge), 2015, 142, 3021-32.	2.5	123
28	Watching eyes take shape. Current Opinion in Genetics and Development, 2015, 32, 73-79.	3.3	43
29	Recursive splicing in long vertebrate genes. Nature, 2015, 521, 371-375.	27.8	128
30	Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome. Nature Communications, 2015, 6, 6904.	12.8	31
31	Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene. Human Genetics, 2015, 134, 1163-1182.	3.8	14
32	Yap and Taz regulate retinal pigment epithelial cell fate. Journal of Cell Science, 2015, 128, e1.1-e1.1.	2.0	2
33	Tcf7l2 Is Required for Left-Right Asymmetric Differentiation of Habenular Neurons. Current Biology, 2014, 24, 2217-2227.	3.9	52
34	Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nature Communications, 2014, 5, 4272.	12.8	52
35	Left-Right Asymmetry Is Required for the Habenulae to Respond to Both Visual and Olfactory Stimuli. Current Biology, 2014, 24, 440-445.	3.9	136
36	Precocious Acquisition of Neuroepithelial Character in the Eye Field Underlies the Onset of Eye Morphogenesis. Developmental Cell, 2013, 27, 293-305.	7.0	86

#	Article	IF	CITATIONS
37	A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation. Brain, 2013, 136, 1488-1507.	7.6	58
38	Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development (Cambridge), 2013, 140, 4193-4202.	2.5	51
39	Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth. Development (Cambridge), 2013, 140, 3997-4007.	2.5	23
40	Vaccination of Piglets up to 1 Week of Age with a Single-Dose Mycoplasma hyopneumoniae Vaccine Induces Protective Immunity within 2 Weeks against Virulent Challenge in the Presence of Maternally Derived Antibodies. Vaccine Journal, 2013, 20, 720-724.	3.1	13
41	Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish. PLoS ONE, 2013, 8, e70053.	2.5	12
42	Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3371-3376.	7.1	49
43	Encoding asymmetry within neural circuits. Nature Reviews Neuroscience, 2012, 13, 832-843.	10.2	125
44	Kidins220/ARMS interacts with Pdzrn3, a protein containing multiple binding domains. Biochimie, 2012, 94, 2054-2057.	2.6	8
45	Morphogenesis underlying the development of the everted teleost telencephalon. Neural Development, 2012, 7, 32.	2.4	97
46	MicroRNA 218 Mediates the Effects of Tbx5a Over-Expression on Zebrafish Heart Development. PLoS ONE, 2012, 7, e50536.	2.5	69
47	Breaking symmetry: The zebrafish as a model for understanding leftâ€right asymmetry in the developing brain. Developmental Neurobiology, 2012, 72, 269-281.	3.0	82
48	Continued growth and circuit building in the anamniote visual system. Developmental Neurobiology, 2012, 72, 328-345.	3.0	40
49	Zebrafish neurobiology: From development to circuit function and behaviour. Developmental Neurobiology, 2012, 72, 215-217.	3.0	7
50	Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development (Cambridge), 2011, 138, 3931-3941.	2.5	65
51	Cloning and developmental expression of zebrafish pdzrn3. International Journal of Developmental Biology, 2011, 55, 989-993.	0.6	12
52	Identification of germline competent chimaeras by copulatory plug genotyping. Transgenic Research, 2011, 20, 429-433.	2.4	7
53	HESX1- and TCF3-mediated repression of Wnt/\hat{l}^2 -catenin targets is required for normal development of the anterior forebrain. Development (Cambridge), 2011, 138, 4931-4942.	2.5	44
54	Retinoic acid receptor signaling regulates choroid fissure closure through independent mechanisms in the ventral optic cup and periocular mesenchyme. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8698-8703.	7.1	99

#	Article	IF	CITATIONS
55	Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 2010, 116, 829-840.	1.4	932
56	The zebrafish <i>flotte lotte</i> mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche. Development (Cambridge), 2010, 137, 2107-2115.	2.5	50
57	Induction and patterning of trunk and tail neural ectoderm by the homeobox gene <i>eve1</i> in zebrafish embryos. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3564-3569.	7.1	17
58	A Useful Approach to Identify Novel Small-Molecule Inhibitors of Wnt-Dependent Transcription. Cancer Research, 2010, 70, 5963-5973.	0.9	96
59	Funduscopy in Adult Zebrafish and Its Application to Isolate Mutant Strains with Ocular Defects. PLoS ONE, 2010, 5, e15427.	2.5	11
60	Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Development (Cambridge), 2009, 136, 1549-1557.	2.5	76
61	Convergent extension movements and ciliary function are mediated by ofd1 , a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Human Molecular Genetics, 2009, 18, 289-303.	2.9	116
62	Dynamic Coupling of Pattern Formation and Morphogenesis in the Developing Vertebrate Retina. PLoS Biology, 2009, 7, e1000214.	5.6	115
63	The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1005-1020.	4.0	290
64	Flamingo regulates epiboly and convergence/extension movements through cell cohesive and signalling functions during zebrafish gastrulation. Development (Cambridge), 2009, 136, 383-392.	2.5	75
65	Reduced TFAP2A function causes variable optic fissure closure and retinal defects and sensitizes eye development to mutations in other morphogenetic regulators. Human Genetics, 2009, 126, 791-803.	3.8	80
66	Mutations in Radial Spoke Head Protein Genes RSPH9 and RSPH4A Cause Primary Ciliary Dyskinesia with Central-Microtubular-Pair Abnormalities. American Journal of Human Genetics, 2009, 84, 197-209.	6.2	303
67	An Fgf8-Dependent Bistable Cell Migratory Event Establishes CNS Asymmetry. Neuron, 2009, 61, 27-34.	8.1	84
68	Lmx1b is essential for survival of periocular mesenchymal cells and influences Fgf-mediated retinal patterning in zebrafish. Developmental Biology, 2009, 332, 287-298.	2.0	84
69	Brain asymmetry is encoded at the level of axon terminal morphology. Neural Development, 2008, 3, 9.	2.4	82
70	The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development (Cambridge), 2008, 135, 1147-1156.	2.5	94
71	Wnt/Axin1/β-Catenin Signaling Regulates Asymmetric Nodal Activation, Elaboration, and Concordance of CNS Asymmetries. Neuron, 2007, 55, 393-405.	8.1	90
72	MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 2007, 8, R173.	9.6	338

#	Article	IF	CITATIONS
73	Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish. BMC Developmental Biology, 2007, 7, 75.	2.1	46
74	Mutation in Rab3 GTPase-Activating Protein (RAB3GAP) Noncatalytic Subunit in a Kindred with Martsolf Syndrome. American Journal of Human Genetics, 2006, 78, 702-707.	6.2	91
75	Neurogenin1 is a determinant of zebrafish basal forebrain dopaminergic neurons and is regulated by the conserved zinc finger protein Tof/Fezl. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5143-5148.	7.1	78
76	Identification of alternatively spliced dab1 isoforms in zebrafish. Development Genes and Evolution, 2006, 216, 291-299.	0.9	14
77	Laterotopic Representation of Left-Right Information onto the Dorso-Ventral Axis of a Zebrafish Midbrain Target Nucleus. Current Biology, 2005, 15, 238-243.	3.9	191
78	fsi Zebrafish Show Concordant Reversal of Laterality of Viscera, Neuroanatomy, and a Subset of Behavioral Responses. Current Biology, 2005, 15, 844-850.	3.9	201
79	Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphel•neurones and cranial motoneurones. Development (Cambridge), 2005, 132, 645-658.	2.5	81
80	Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development (Cambridge), 2005, 132, 2401-2413.	2.5	80
81	Early Stages of Zebrafish Eye Formation Require the Coordinated Activity of Wnt11, Fz5, and the Wnt/β-Catenin Pathway. Neuron, 2005, 47, 43-56.	8.1	203
82	Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development (Cambridge), 2004, 131, 3581-3592.	2.5	94
83	Inhibition of Wnt/Axin/β-catenin pathway activity promotes ventral CNS midline tissue to adopt hypothalamic rather than floorplate identity. Development (Cambridge), 2004, 131, 5923-5933.	2.5	61
84	A Family of Acid-sensing Ion Channels from the Zebrafish. Journal of Biological Chemistry, 2004, 279, 18783-18791.	3.4	73
85	Hedgehog and Fgf signaling pathways regulate the development oftphR-expressing serotonergic raphe neurons in zebrafish embryos. Journal of Neurobiology, 2004, 60, 275-288.	3.6	80
86	Early Steps in the Development of the Forebrain. Developmental Cell, 2004, 6, 167-181.	7.0	407
87	Eph/Ephrin Signaling Regulates the Mesenchymal-to-Epithelial Transition of the Paraxial Mesoderm during Somite Morphogenesis. Current Biology, 2003, 13, 1571-1582.	3.9	142
88	Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality. Neuron, 2003, 39, 423-438.	8.1	175
89	Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development (Cambridge), 2003, 130, 5375-5384.	2.5	145
90	Ash1a and Neurogenin1 function downstream of Floating head to regulate epiphysial neurogenesis. Development (Cambridge), 2003, 130, 2455-2466.	2.5	52

#	Article	IF	CITATIONS
91	Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development (Cambridge), 2003, 130, 955-968.	2.5	151
92	N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development (Cambridge), 2003, 130, 2479-2494.	2.5	244
93	Heparan Sulfate 6-O-Sulfotransferase Is Essential for Muscle Development in Zebrafish. Journal of Biological Chemistry, 2003, 278, 31118-31127.	3.4	79
94	Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development (Cambridge), 2003, 130, 4037-4046.	2.5	231
95	Establishment of the Telencephalon during Gastrulation by Local Antagonism of Wnt Signaling. Neuron, 2002, 35, 255-265.	8.1	288
96	Lefty Antagonism of Squint Is Essential for Normal Gastrulation. Current Biology, 2002, 12, 2129-2135.	3.9	89
97	Conserved and divergent patterns of <i>Reelin</i> expression in the zebrafish central nervous system. Journal of Comparative Neurology, 2002, 450, 73-93.	1.6	81
98	Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development (Cambridge), 2002, 129, 2851-2865.	2.5	259
99	Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development (Cambridge), 2002, 129, 3055-3065.	2.5	90
100	<i>pax2.1</i> is required for the development of thyroid follicles in zebrafish. Development (Cambridge), 2002, 129, 3751-3760.	2.5	150
101	Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development (Cambridge), 2002, 129, 4335-4346.	2.5	247
102	Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development (Cambridge), 2002, 129, 2851-65.	2.5	87
103	Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development (Cambridge), 2002, 129, 3055-65.	2.5	37
104	Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development (Cambridge), 2002, 129, 4335-46.	2.5	95
105	The Nodal Pathway Acts Upstream of Hedgehog Signaling to Specify Ventral Telencephalic Identity. Neuron, 2001, 29, 341-351.	8.1	158
106	Asymmetry in the epithalamus of vertebrates. Journal of Anatomy, 2001, 199, 63-84.	1.5	232
107	A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes and Development, 2001, 15, 1427-1434.	5.9	242
108	Asymmetry in the epithalamus of vertebrates. Journal of Anatomy, 2001, 199, 63-84.	1.5	32

#	Article	IF	CITATIONS
109	Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature, 2000, 405, 76-81.	27.8	919
110	Programmed Cell Death in Zebrafish Rohon Beard Neurons Is Influenced by TrkC1/NT-3 Signaling. Developmental Biology, 2000, 226, 220-230.	2.0	100
111	Midline Signals Regulate Retinal Neurogenesis in Zebrafish. Neuron, 2000, 27, 251-263.	8.1	206
112	A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain. Neuron, 2000, 28, 399-409.	8.1	257
113	Induction and Dorsoventral Patterning of the Telencephalon. Neuron, 2000, 28, 641-651.	8.1	306
114	Eph Receptors and Ephrins Are Key Regulators of Morphogenesis. , 2000, , 123-149.		5
115	A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Current Biology, 1999, 9, 1131-S4.	3.9	134
116	Development of Noradrenergic Neurons in the Zebrafish Hindbrain Requires BMP, FGF8, and the Homeodomain Protein Soulless/Phox2a. Neuron, 1999, 24, 555-566.	8.1	207
117	Mutations in the Zebrafish Unmask Shared Regulatory Pathways Controlling the Development of Catecholaminergic Neurons. Developmental Biology, 1999, 208, 473-487.	2.0	200
118	Nigel Holder (July 2, 1953–December 11, 1998). Developmental Biology, 1999, 208, 253-254.	2.0	0
119	A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature, 1998, 391, 788-792.	27.8	210
120	Isolation, expression and regulation of a zebrafish paraxis homologue. Mechanisms of Development, 1998, 78, 85-89.	1.7	23
121	floating head and masterblind Regulate Neuronal Patterning in the Roof of the Forebrain. Neuron, 1997, 18, 43-57.	8.1	131
122	Anf: a novel class of vertebrate homeobox genes expressed at the anterior end of the main embryonic axis. Gene, 1997, 200, 25-34.	2.2	64
123	The zebrafish homologue of the ret receptor and its pattern of expression during embryogenesis. Oncogene, 1997, 14, 879-889.	5.9	69
124	Distribution of Pax6 protein during eye development suggests discrete roles in proliferative and differentiated visual cells. Development Genes and Evolution, 1997, 206, 363-369.	0.9	55
125	Characterisation of five novel zebrafish Eph -related receptor tyrosine kinases suggests roles in patterning the neural plate. Development Genes and Evolution, 1997, 206, 515-531.	0.9	36
126	Analysis of axon tract formation in the zebrafish brain: the role of territories of gene expression and their boundaries. Cell and Tissue Research, 1997, 290, 189-196.	2.9	27

#	Article	IF	CITATIONS
127	Analysis of axon tract formation in the zebrafish brain: the role of territories of gene expression and their boundaries. , 1997, , 189-196.		0
128	Pax proteins and eye development. Current Opinion in Neurobiology, 1996, 6, 49-56.	4.2	77
129	Antibodies against pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish. Journal of Neurobiology, 1996, 29, 399-413.	3.6	152
130	Antibodies against pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish. Journal of Neurobiology, 1996, 29, 399-413.	3.6	1
131	Expression of zebrafish GATA 3 (gta3) during gastrulation and neurulation suggests a role in the specification of cell fate. Mechanisms of Development, 1995, 51, 169-182.	1.7	94
132	Initial tract formation in the vertebrate brain. Progress in Brain Research, 1994, 102, 79-93.	1.4	48
133	Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron, 1994, 13, 1039-1053.	8.1	215
134	Clues from clueless. Current Biology, 1993, 3, 536-539.	3.9	0
135	Border disputes: do boundaries play a role in growth-cone guidance?. Trends in Neurosciences, 1993, 16, 316-323.	8.6	82
136	Acquisition of regional and cellular identities in the developing zebrafish nervous system. Current Opinion in Neurobiology, 1992, 2, 9-15.	4.2	10
137	Zebrafish pax[b] is involved in the formation of the midbrain–hindbrain boundary. Nature, 1992, 360, 87-89.	27.8	131
138	The paired domain-containing nuclear factorPax[b] is expressed in specific commissural interneurons in zebrafish embryos. Journal of Neurobiology, 1992, 23, 933-946.	3.6	64
139	Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. Journal of Comparative Neurology, 1992, 326, 263-272.	1.6	124
140	Continuous growth of the motor system in the axolotl. Journal of Comparative Neurology, 1991, 303, 534-550.	1.6	39
141	A pioneering growth cone in the embryonic zebrafish brain Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2293-2296.	7.1	63