Johanna P Laakkonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6490275/publications.pdf

Version: 2024-02-01

623734 580821 30 692 14 25 citations g-index h-index papers 30 30 30 1021 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Large Vessel Cell Heterogeneity and Plasticity: Focus in Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 811-818.	2.4	11
2	BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis, 2021, 24, 129-144.	7.2	91
3	The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules, 2021, 11, 452.	4.0	3
4	Cyclo-oxygenase 2, a putative mediator of vessel remodeling, is expressed in the brain AVM vessels and associates with inflammation. Acta Neurochirurgica, 2021, 163, 2503-2514.	1.7	3
5	Characterization of a functional endothelial super-enhancer that regulates ADAMTS18 and angiogenesis. Nucleic Acids Research, 2021, 49, 8078-8096.	14.5	13
6	Profiling of Primary and Mature miRNA Expression in Atherosclerosis-Associated Cell Types. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2149-2167.	2.4	17
7	Hypoxia-Mediated Regulation of Histone Demethylases Affects Angiogenesis-Associated Functions in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2665-2677.	2.4	15
8	Gene and protein therapy approaches to cardiac neovascularization and protection from ischemia., 2020,, 649-666.		0
9	Axon Guidance-Related Factor FLRT3 Regulates VEGF-Signaling and Endothelial Cell Function. Frontiers in Physiology, 2019, 10, 224.	2.8	16
10	Assessment of the Relaxation-Enhancing Properties of a Nitroxide-Based Contrast Agent TEEPO-Glc with <i>In Vivo</i> Magnetic Resonance Imaging. Contrast Media and Molecular Imaging, 2019, 2019, 1-8.	0.8	5
11	Beyond endothelial cells: Vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascular Pharmacology, 2019, 112, 91-101.	2.1	25
12	Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Scientific Reports, 2018, 8, 16709.	3.3	33
13	Prostaglandin E ₂ –EP2–NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Science Signaling, 2017, 10, .	3.6	121
14	Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling. Scientific Reports, 2017, 7, 5525.	3.3	9
15	Differential regulation of angiogenic cellular processes and claudin-5 by histamine and VEGF via PI3K-signaling, transcription factor SNAI2 and interleukin-8. Angiogenesis, 2017, 20, 109-124.	7. 2	38
16	Animal Models of Gene Therapy for Cardiovascular Disease., 2016,, 691-705.		0
17	Recent Advancements in Cardiovascular Gene Therapy and Vascular Biology. Human Gene Therapy, 2015, 26, 518-524.	2.7	20
18	Slit2 modifies VEGF-induced angiogenic responses in rabbit skeletal muscle via reduced eNOS activity. Cardiovascular Research, 2015, 107, 267-276.	3.8	13

#	Article	IF	CITATION
19	Abstract 18166: Increasing Endothelialization of BMS and DES With Intra-arterial AdVEGF-A Gene Therapy in Porcine Coronary Arteries. Circulation, $2015,132,.$	1.6	0
20	Epigenetic Upregulation of Endogenous VEGF-A Reduces Myocardial Infarct Size in Mice. PLoS ONE, 2014, 9, e89979.	2.5	29
21	Cell Susceptibility to Baculovirus Transduction and Echovirus Infection Is Modified by Protein Kinase C Phosphorylation and Vimentin Organization. Journal of Virology, 2013, 87, 9822-9835.	3.4	14
22	6- $\langle i \rangle$ O $\langle i \rangle$ - and $\langle i \rangle$ N $\langle i \rangle$ -Sulfated Syndecan-1 Promotes Baculovirus Binding and Entry into Mammalian Cells. Journal of Virology, 2013, 87, 11148-11159.	3.4	35
23	Transcellular Targeting of Fiber- and Hexon-Modified Adenovirus Vectors across the Brain Microvascular Endothelial Cells In Vitro. PLoS ONE, 2012, 7, e45977.	2.5	11
24	Coxsackievirus B3-Induced Cellular Protrusions: Structural Characteristics and Functional Competence. Journal of Virology, 2011, 85, 6714-6724.	3.4	23
25	Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. Journal of Biotechnology, 2010, 145, 111-119.	3 . 8	18
26	Morphological characterization of baculovirus Autographa californica multiple nucleopolyhedrovirus. Virus Research, 2010, 148, 71-74.	2.2	7
27	Clathrin-Independent Entry of Baculovirus Triggers Uptake of E. coli in Non-Phagocytic Human Cells. PLoS ONE, 2009, 4, e5093.	2.5	43
28	Tumor targeting of baculovirus displaying a lymphatic homing peptide. Journal of Gene Medicine, 2008, 10, 1019-1031.	2.8	33
29	Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cellular Microbiology, 2008, 10, 667-681.	2.1	32
30	Wall Shear Stress Predicts Media Degeneration and Biomechanical Changes in Thoracic Aorta.	2.8	14