Alina V Brenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6489976/publications.pdf

Version: 2024-02-01

201674 189892 2,656 59 27 50 h-index citations g-index papers 60 60 60 2958 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Impact of uncertainties in exposure assessment on thyroid cancer risk among cleanup workers in Ukraine exposed due to the Chornobyl accident. European Journal of Epidemiology, 2022, 37, 837-847.	5.7	6
2	Risk of thyroid cancer in Ukrainian cleanup workers following the Chornobyl accident. European Journal of Epidemiology, 2022, 37, 67-77.	5.7	10
3	Esophageal atresia and tracheoesophageal fistula: prenatal sonographic manifestation from early to late pregnancy. Ultrasound in Obstetrics and Gynecology, 2021, 58, 92-98.	1.7	12
4	Utility of gene expression studies in relation to radiation exposure and clinical outcomes: thyroid cancer in the Ukrainian-American cohort and late health effects in a MAYAK worker cohort. International Journal of Radiation Biology, 2021, 97, 12-18.	1.8	4
5	Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science, 2021, 372, .	12.6	85
6	Belarusian <i>in utero</i> cohort: A new opportunity to evaluate the health effects of prenatal and early-life exposure to ionising radiation. Journal of Radiological Protection, 2020, 40, 280-295.	1.1	7
7	Radiation risk of central nervous system tumors in the Life Span Study of atomic bomb survivors, 1958–2009. European Journal of Epidemiology, 2020, 35, 591-600.	5.7	43
8	In memoriam Charles E Land, 1937–2018. Journal of Radiological Protection, 2019, 39, 662-664.	1.1	0
9	Hyperthyroidism After Radiation Therapy for Childhood Cancer: A Report from the Childhood Cancer Survivor Study. International Journal of Radiation Oncology Biology Physics, 2019, 104, 415-424.	0.8	14
10	Reply to letter: Thyroid neoplasia after Chernobyl: A comment. International Journal of Cancer, 2019, 144, 2898-2898.	5.1	0
11	Thyroid Cancer and Benign Nodules After Exposure <i>In Utero</i> to Fallout From Chernobyl. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 41-48.	3.6	23
12	Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. Journal of the National Cancer Institute, 2018, 110, 371-378.	6.3	52
13	Serially measured pre-diagnostic levels of serum cytokines and risk of brain cancer in active component military personnel. British Journal of Cancer, 2018, 119, 893-900.	6.4	5
14	Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: a pooled analysis of nine historical cohort studies. Lancet Haematology,the, 2018, 5, e346-e358.	4.6	103
15	Comparative Histopathologic Analysis of "Radiogenic―and "Sporadic―Papillary Thyroid Carcinoma: Patients Born Before and After the Chernobyl Accident. Thyroid, 2018, 28, 880-890.	4.5	16
16	Factors associated with serum thyroglobulin in a Ukrainian cohort exposed to iodine-131 from the accident at the Chernobyl Nuclear Plant. Environmental Research, 2017, 156, 801-809.	7.5	8
17	Thyroid Cancer Risk in Ukraine Following the Chernobyl Accident (The Ukrainian–American Cohort) Tj ETQq1 ː	1 0.78431	4 rgBT /Overlo
18	American Thyroid Association Scientific Statement on the Use of Potassium Iodide Ingestion in a Nuclear Emergency. Thyroid, 2017, 27, 865-877.	4.5	14

#	Article	IF	CITATIONS
19	Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiation Research, 2017, 187, 513-537.	1.5	307
20	Lung, Laryngeal and Other Respiratory Cancer Incidence among Japanese Atomic Bomb Survivors: An Updated Analysis from 1958 through 2009. Radiation Research, 2017, 187, 538.	1.5	85
21	Neonatal outcomes following exposure in utero to fallout from Chernobyl. European Journal of Epidemiology, 2017, 32, 1075-1088.	5.7	20
22	Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. International Journal of Cancer, 2017, 141, 1585-1588.	5.1	53
23	Radiation-associated circulatory disease mortality in a pooled analysis of 77,275 patients from the Massachusetts and Canadian tuberculosis fluoroscopy cohorts. Scientific Reports, 2017, 7, 44147.	3.3	28
24	Reply to the Comments by Mortazavi and Doss on "Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009―(Radiat Res 2017; 187:513–537). Radiation Research, 2017, 188, 370)- 3 7/1.	3
25	Risk of Thyroid Nodules in Residents of Belarus Exposed to Chernobyl Fallout as Children and Adolescents. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2207-2217.	3.6	44
26	Selected single-nucleotide polymorphisms in <i>FOXE1</i> , <i>SERPINA5</i> , <i>FTO</i> , <i>EVPL</i> , <i>TICAM1</i> and <i>SCARB1</i> are associated with papillary and follicular thyroid cancer risk: replication study in a German population. Carcinogenesis, 2016, 37, 677-684.	2.8	34
27	Non-thyroid cancer incidence in Belarusian residents exposed to Chernobyl fallout in childhood and adolescence: Standardized Incidence Ratio analysis, 1997–2011. Environmental Research, 2016, 147, 44-49.	7.5	10
28	Circulatory disease mortality in the Massachusetts tuberculosis fluoroscopy cohort study. European Journal of Epidemiology, 2016, 31, 287-309.	5.7	13
29	Major Factors Affecting Incidence of Childhood Thyroid Cancer in Belarus after the Chernobyl Accident: Do Nitrates in Drinking Water Play a Role?. PLoS ONE, 2015, 10, e0137226.	2.5	25
30	Impact of Uncertainties in Exposure Assessment on Thyroid Cancer Risk among Persons in Belarus Exposed as Children or Adolescents Due to the Chernobyl Accident. PLoS ONE, 2015, 10, e0139826.	2.5	25
31	Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. Carcinogenesis, 2015, 36, 748-756.	2.8	25
32	Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 2015, 113, 1556-1564.	6.4	29
33	Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort. Carcinogenesis, 2015, 36, 1381-1387.	2.8	11
34	Risk of Thyroid Follicular Adenoma Among Children and Adolescents in Belarus Exposed to Iodine-131 After the Chornobyl Accident. American Journal of Epidemiology, 2015, 182, 781-790.	3.4	19
35	ETV6â€NTRK3 is a common chromosomal rearrangement in radiationâ€associated thyroid cancer. Cancer, 2014, 120, 799-807.	4.1	231
36	Personal History of Diabetes, Genetic Susceptibility to Diabetes, and Risk of Brain Glioma: A Pooled Analysis of Observational Studies. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 47-54.	2.5	31

#	Article	IF	CITATIONS
37	Thyroid cancer incidence in Chornobyl liquidators in Ukraine: SIR analysis, 1986–2010. European Journal of Epidemiology, 2014, 29, 337-342.	5.7	17
38	In Utero Exposure to Iodine-131 from Chernobyl Fallout and Anthropometric Characteristics in Adolescence. Radiation Research, 2014, 181, 293.	1.5	9
39	Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.	2.5	44
40	Joint effects between five identified risk variants, allergy, and autoimmune conditions on glioma risk. Cancer Causes and Control, 2013, 24, 1885-1891.	1.8	23
41	<i>RET/PTC</i> and <i>PAX8/PPAR</i> î³ chromosomal rearrangements in postâ€Chernobyl thyroid cancer and their association with iodineâ€131 radiation dose and other characteristics. Cancer, 2013, 119, 1792-1799.	4.1	99
42	Measures of Thyroid Function among Belarusian Children and Adolescents Exposed to Iodine-131 from the Accident at the Chernobyl Nuclear Plant. Environmental Health Perspectives, 2013, 121, 865-871.	6.0	51
43	Common Single Nucleotide Polymorphisms in Genes Related to Immune Function and Risk of Papillary Thyroid Cancer. PLoS ONE, 2013, 8, e57243.	2.5	18
44	Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine–US Thyroid) Tj ETQqı	0 0 0 rgBT	/Oyerlock 10
45	lodine-131 Dose Dependent Gene Expression in Thyroid Cancers and Corresponding Normal Tissues Following the Chernobyl Accident. PLoS ONE, 2012, 7, e39103.	2.5	47
46	Selected human leukocyte antigen class II polymorphisms and risk of adult glioma. Journal of Neuroimmunology, 2011, 233, 185-191.	2.3	8
47	I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident. Environmental Health Perspectives, 2011, 119, 933-939.	6.0	178
48	Non-malignant Thyroid Diseases after a Wide Range of Radiation Exposures. Radiation Research, 2010, 174, 877-888.	1.5	57
49	Subclinical Hypothyroidism after Radioiodine Exposure: Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident (1998–2000). Environmental Health Perspectives, 2009, 117, 745-750.	6.0	39
50	Common Variation in Genes Related to Innate Immunity and Risk of Adult Glioma. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1651-1658.	2.5	60
51	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Dose-Response Analysis of Thyroid Follicular Adenomas Detected during First Screening in Ukraine (1998-2000). American Journal of Epidemiology, 2007, 167, 305-312.	3.4	41
52	Clinical and epidemiologic characteristics of first primary tumors of the central nervous system and related organs among atomic bomb survivors in Hiroshima and Nagasaki, 1958–1995. Cancer, 2004, 101, 1644-1654.	4.1	65
53	Menstrual and Reproductive Factors and Risk of Lung Cancer among Chinese women, Eastern Gansu Province, 1994-1998 Journal of Epidemiology, 2003, 13, 22-28.	2.4	32
54	Polio vaccination and risk of brain tumors in adults: no apparent association. Cancer Epidemiology Biomarkers and Prevention, 2003, 12, 177-8.	2.5	1

#	Article	IF	CITATIONS
55	Lung Cancer and Indoor Exposure to Coal and Biomass in Rural China. Journal of Occupational and Environmental Medicine, 2002, 44, 338-344.	1.7	55
56	Instrumental Measurements of Skin Color and Skin Ultraviolet Light Sensitivity and Risk of Cutaneous Malignant Melanoma: A Case-Control Study in an Italian Population. American Journal of Epidemiology, 2002, 156, 353-362.	3 . 4	14
57	History of allergies and autoimmune diseases and risk of brain tumors in adults. International Journal of Cancer, 2002, 99, 252-259.	5.1	200
58	Previous pulmonary diseases and risk of lung cancer in Gansu Province, China. International Journal of Epidemiology, 2001, 30, 118-124.	1.9	143
59	Lung cancer and environmental tobacco smoke in a non-industrial area of China. International Journal of Cancer, 2000, 88, 139-145.	5.1	36