
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6489641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-pressure and thermal processing of cloudy hawthorn berry (Crataegus pinnatifida) juice: Impact on microbial shelf-life, enzyme activity and quality-related attributes. Food Chemistry, 2022, 372, 131313.	4.2	17
2	Evaluation of physicochemical characteristics, nutritional composition and antioxidant capacity of Chinese organic hawthorn berry (<i>Crataegus pinnatifida</i>). International Journal of Food Science and Technology, 2020, 55, 1679-1688.	1.3	18
3	Valorization of hazelnut shells into natural antioxidants by ultrasoundâ€assisted extraction: Process optimization and phenolic composition identification. Journal of Food Process Engineering, 2018, 41, e12692.	1.5	10
4	Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus) Tj ETQq0 0 0 rgB1	- /Overlock 4.2	2 10 Tf 50 622
5	A Fuzzy Inference System (FIS) and Dimensional Analysis for Predicting Energy Consumption and Mean Residence Time in a Twin-Screw Extruder. Journal of Food Process Engineering, 2015, 38, 125-134.	1.5	2
6	Characterization of sodium starch glycolate prepared using reactive extrusion and its comparisons with a commercial brand VIVASTARA®P. Industrial Crops and Products, 2013, 41, 324-330.	2.5	9
7	The effect of temperature and moisture on the mechanical properties of extruded cornstarch. Journal of Texture Studies, 2013, 44, 225-237.	1.1	25
8	Optimization of hydrogen production from supercritical water gasification of crude glycerol-byproduct of biodiesel production. International Journal of Energy Research, 2013, 37, 1600-1609.	2.2	26
9	Supersaturated Split-Plot Designs. Journal of Quality Technology, 2013, 45, 61-73.	1.8	6
10	Fluidized-bed gasification of dairy manure by Box–Behnken design. Waste Management and Research, 2012, 30, 506-511.	2.2	19
11	Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Management and Research, 2012, 30, 1066-1071.	2.2	39
12	Value-added uses for crude glycerola byproduct of biodiesel production. Biotechnology for Biofuels, 2012, 5, 13.	6.2	778
13	Nutritional composition and antioxidant activity in hazelnut shells from USâ€grown cultivars. International Journal of Food Science and Technology, 2012, 47, 940-946.	1.3	25
14	Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Industrial Crops and Products, 2012, 37, 352-357.	2.5	72
15	Pretreatment of Corn Stover with Twin-Screw Extrusion Followed by Enzymatic Saccharification. Applied Biochemistry and Biotechnology, 2012, 166, 458-469.	1.4	43
16	Continuous Solventless Extrusion Process for Producing Sodium Carboxymethyl Starch Suitable for Disintegrant Applications in Solid Dosage Forms. Industrial & Engineering Chemistry Research, 2011, 50, 12784-12789.	1.8	10
17	Nutritional and antiâ€nutritional compositions of defatted Nebraska hybrid hazelnut meal. International Journal of Food Science and Technology, 2011, 46, 2022-2029.	1.3	24
18	Preparation of highly substituted carboxymethyl starch using a twinâ€screw extruder. Starch/Staerke, 2011, 63, 771-779.	1.1	17

#	Article	IF	CITATIONS
19	Evaluation of Nebraska hybrid hazelnuts: Nut/kernel characteristics, kernel proximate composition, and oil and protein properties. Industrial Crops and Products, 2010, 31, 84-91.	2.5	33
20	Optimum conditions for dilute acid hydrolysis of hemicellulose in dried distillers grains with solubles. Industrial Crops and Products, 2010, 32, 511-517.	2.5	26
21	Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Bioresource Technology, 2010, 101, 3696-3701.	4.8	63
22	Adding value to carbon dioxide from ethanol fermentations. Bioresource Technology, 2010, 101, 3311-3319.	4.8	107
23	Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films. Carbohydrate Polymers, 2010, 82, 1082-1089.	5.1	62
24	Composition and oxidative stabilities of oils extracted from hybrid hazelnuts grown in Nebraska, USA. International Journal of Food Science and Technology, 2010, 45, 2329-2336.	1.3	9
25	Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Industrial Crops and Products, 2009, 29, 427-436.	2.5	27
26	Synthesis and characterization of hazelnut oil-based biodiesel. Industrial Crops and Products, 2009, 29, 473-479.	2.5	41
27	Residence Time Distribution and Modeling of Mechanical Properties of Extruded Nanocomposite Foams Using Adaptive Neuroâ€Fuzzy Inference System. Starch/Staerke, 2009, 61, 326-333.	1.1	1
28	Residence Time Distribution Determination Using On‣ine Digital Image Processing. Starch/Staerke, 2009, 61, 146-153.	1.1	8
29	Macromolecular Changes in Extruded Starchâ€Films Plasticized with Glycerol, Water and Stearic Acid. Starch/Staerke, 2009, 61, 256-266.	1.1	46
30	Tapioca starchâ€poly(lactic acid) loisite 30B nanocomposite foams. Polymer Composites, 2009, 30, 665-672.	2.3	37
31	Steam–air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technology, 2009, 100, 2062-2068.	4.8	182
32	Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2009, 2, 556-581.	1.6	673
33	Extrusion and Characterization of Starch Films. Cereal Chemistry, 2009, 86, 44-51.	1.1	29
34	Modeling residence time distribution in a twin-screw extruder as a series of ideal steady-state flow reactors. Journal of Food Engineering, 2008, 84, 441-448.	2.7	48
35	An Adaptive Neuroâ€Fuzzy Inference System for Modeling Mechanical Properties of Tapioca Starchâ€Poly(Lactic Acid) Nanocomposite Foams. Starch/Staerke, 2008, 60, 159-164.	1.1	20
36	Effects of Extrusion Temperature and Plasticizers on the Physical and Functional Properties of Starch Films. Starch/Staerke, 2008, 60, 527-538.	1.1	90

#	Article	IF	CITATIONS
37	Extrusion of starchâ€based looseâ€fill packaging foams: effects of temperature, moisture and talc on physical properties. Packaging Technology and Science, 2008, 21, 171-183.	1.3	49
38	Preparation and characterization of tapioca starchâ€poly(lactic acid)â€Cloisite NA ⁺ nanocomposite foams. Journal of Applied Polymer Science, 2008, 110, 2337-2344.	1.3	38
39	Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy, 2008, 32, 460-467.	2.9	255
40	Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Industrial Crops and Products, 2008, 28, 95-106.	2.5	68
41	Expansion, Morphological, and Mechanical Properties of Starchâ^Polystyrene Foams Containing Various Additives. Industrial & Engineering Chemistry Research, 2008, 47, 4736-4742.	1.8	12
42	Compaction of Corn Distillers Dried Grains. Cereal Chemistry, 2008, 85, 158-164.	1.1	2
43	Effect of eggshell powder as nucleating agent on the structure, morphology and functional properties of normal corn starch foams. Packaging Technology and Science, 2007, 20, 165-172.	1.3	23
44	Physical, Mechanical, and Macromolecular Properties of Starch Acetate during Extrusion Foaming Transformationâ€. Industrial & Engineering Chemistry Research, 2006, 45, 3991-4000.	1.8	7
45	Selected morphological and functional properties of extruded acetylated starch–cellulose foams. Bioresource Technology, 2006, 97, 1716-1726.	4.8	60
46	Digital image processing for measurement of residence time distribution in a laboratory extruder. Journal of Food Engineering, 2006, 75, 237-244.	2.7	58
47	Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 2006, 99, 1684-1691.	1.3	277
48	Shrinkage and re-expansion of extruded starch acetate foams. Journal of Applied Polymer Science, 2006, 102, 4264-4268.	1.3	2
49	Modeling of transport phenomena and melting kinetics of starch in a co-rotating twin-screw extruder. Advances in Polymer Technology, 2006, 25, 22-40.	0.8	5
50	Role of Blowing Agents in Expansion of High-Amylose Starch Acetate During Extrusion. Cereal Chemistry, 2006, 83, 577-583.	1.1	16
51	Preparation and properties of biodegradable foams from starch acetate and poly(tetramethylene) Tj ETQq1 1 0.7	784314 rg	BT /Overlock
52	Chitosan–starch composite film: preparation and characterization. Industrial Crops and Products, 2005, 21, 185-192.	2.5	686
53	Acetylated starch-polylactic acid loose-fill packaging materials. Industrial Crops and Products, 2005, 22, 109-123.	2.5	70
54	Effects of the properties of blowing agents on the processing and performance of extruded starch acetate. Journal of Applied Polymer Science, 2005, 97, 1880-1890.	1.3	9

#	Article	IF	CITATIONS
55	Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion. Advances in Polymer Technology, 2005, 24, 29-45.	0.8	55
56	Physical, Mechanical, and Morphological Characteristics of Extruded Starch Acetate Foams. Journal of Polymers and the Environment, 2005, 13, 221-230.	2.4	16
57	Starch Acetate-Maleate Mixed Ester Synthesis and Characterization. Cereal Chemistry, 2005, 82, 336-340.	1.1	13
58	Selected Morphological and Functional Properties of Extruded Acetylated Starchâ^'Polylactic Acid Foams. Industrial & Engineering Chemistry Research, 2005, 44, 3106-3115.	1.8	26
59	Melt-Intercalated Starch Acetate Nanocomposite Foams as Affected by Type of Organoclay. Cereal Chemistry, 2005, 82, 105-110.	1.1	34
60	Functional properties of extruded foam composites of starch acetate and corn cob fiber. Industrial Crops and Products, 2004, 19, 255-269.	2.5	80
61	Functional Properties of Extruded Acetylated Starch–Cellulose Foams. Journal of Polymers and the Environment, 2004, 12, 113-121.	2.4	11
62	Effects of Extruder Die Nozzle Dimensions on Expansion and Micrographic Characterization During Extrusion of Acetylated Starch. Starch/Staerke, 2004, 56, 108-117.	1.1	31
63	Extrusion of Starch Acetate with Mixed Blowing Agents. Starch/Staerke, 2004, 56, 484-494.	1.1	15
64	Extruding Foams from Corn Starch Acetate and Native Corn Starchâ€. Biomacromolecules, 2004, 5, 2329-2339.	2.6	58
65	Synthesis and Characterization of Starch Acetates with High Substitution. Cereal Chemistry, 2004, 81, 735-740.	1.1	197
66	Characteristics of biodegradable Mater-Bi®-starch based foams as affected by ingredient formulations. Industrial Crops and Products, 2001, 13, 219-227.	2.5	60
67	Laboratory composting of extruded poly(lactic acid) sheets. Bioresource Technology, 2001, 76, 57-61.	4.8	133
68	Thermal conductivity of granular rice starches. International Journal of Food Properties, 2000, 3, 283-293.	1.3	10
69	Functional Properties of Polylactic Acid Starch-Based Loose-Fill Packaging Foams. Cereal Chemistry, 2000, 77, 779-783.	1.1	74
70	Rheological properties of amorphous and semicrystalline polylactic acid polymers. Industrial Crops and Products, 1999, 10, 47-53.	2.5	147
71	QUALITY EVALUATION OF DEEP-FAT FRIED ONION RINGS. Journal of Food Quality, 1998, 21, 95-105.	1.4	20
72	Extrusion Cooking Reduces Recoverability of Fumonisin B ₁ from Extruded Corn Grits. Journal of Food Science, 1998, 63, 696-698.	1.5	41

MILFORD A HANNA

#	Article	IF	CITATIONS
73	Flavor Retention in Pregelatinized and Internally Flavored Starch Extrudates. Cereal Chemistry, 1997, 74, 396-399.	1.1	10
74	Cyclodextrin Complexed Flavors Retention in Extruded Starches. Journal of Food Science, 1997, 62, 1057-1060.	1.5	35
75	Extrudates of Starch-Xanthan Gum Mixtures as Affected by Chemical Agents and Irradiation. Journal of Food Science, 1997, 62, 816-820.	1.5	13
76	Crystallization characteristics of methyl tallowate and its blends with ethanol and diesel fuel. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 759-763.	0.8	13
77	Volatiles Retention as Influenced by Method of Addition during Extrusion Cooking. Journal of Food Science, 1996, 61, 985-990.	1.5	11
78	Starch-stearic Acid Complex Development within Single and Twin Screw Extruders. Journal of Food Science, 1996, 61, 778-782.	1.5	22
79	Physical and Molecular Properties of Re-extruded Starches as Affected by Extruder Screw Configuration. Journal of Food Science, 1996, 61, 596-600.	1.5	9
80	Fuel properties of tallow and soybean oil esters. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 1557-1564.	0.8	161
81	Properties of extruded starch-based plastic foam. Industrial Crops and Products, 1995, 4, 71-77.	2.5	38
82	Screw Configuration Effects on Corn Starch Expansion During Extrusion. Journal of Food Science, 1994, 59, 895-896.	1.5	41