Milford A Hanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6489641/publications.pdf

Version: 2024-02-01

82 papers

5,836 citations

36 h-index 74108 75 g-index

85 all docs 85 docs citations

85 times ranked 7145 citing authors

#	Article	IF	CITATIONS
1	Value-added uses for crude glycerola byproduct of biodiesel production. Biotechnology for Biofuels, 2012, 5, 13.	6.2	778
2	Chitosan–starch composite film: preparation and characterization. Industrial Crops and Products, 2005, 21, 185-192.	2.5	686
3	Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2009, 2, 556-581.	1.6	673
4	Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 2006, 99, 1684-1691.	1.3	277
5	Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy, 2008, 32, 460-467.	2.9	255
6	Synthesis and Characterization of Starch Acetates with High Substitution. Cereal Chemistry, 2004, 81, 735-740.	1.1	197
7	Steam–air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technology, 2009, 100, 2062-2068.	4.8	182
8	Fuel properties of tallow and soybean oil esters. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 1557-1564.	0.8	161
9	Rheological properties of amorphous and semicrystalline polylactic acid polymers. Industrial Crops and Products, 1999, 10, 47-53.	2.5	147
10	Laboratory composting of extruded poly(lactic acid) sheets. Bioresource Technology, 2001, 76, 57-61.	4.8	133
11	Adding value to carbon dioxide from ethanol fermentations. Bioresource Technology, 2010, 101, 3311-3319.	4.8	107
12	Effects of Extrusion Temperature and Plasticizers on the Physical and Functional Properties of Starch Films. Starch/Staerke, 2008, 60, 527-538.	1.1	90
13	Functional properties of extruded foam composites of starch acetate and corn cob fiber. Industrial Crops and Products, 2004, 19, 255-269.	2.5	80
14	Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 222
15	Functional Properties of Polylactic Acid Starch-Based Loose-Fill Packaging Foams. Cereal Chemistry, 2000, 77, 779-783.	1.1	74
16	Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Industrial Crops and Products, 2012, 37, 352-357.	2.5	72
17	Acetylated starch-polylactic acid loose-fill packaging materials. Industrial Crops and Products, 2005, 22, 109-123.	2.5	70
18	Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Industrial Crops and Products, 2008, 28, 95-106.	2.5	68

#	ARTICLE	IF	Citations
19	Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Bioresource Technology, 2010, 101, 3696-3701.	4.8	63
20	Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films. Carbohydrate Polymers, 2010, 82, 1082-1089.	5.1	62
21	Characteristics of biodegradable Mater-Bi \hat{A}^{\otimes} -starch based foams as affected by ingredient formulations. Industrial Crops and Products, 2001, 13, 219-227.	2.5	60
22	Selected morphological and functional properties of extruded acetylated starch–cellulose foams. Bioresource Technology, 2006, 97, 1716-1726.	4.8	60
23	Extruding Foams from Corn Starch Acetate and Native Corn Starchâ€. Biomacromolecules, 2004, 5, 2329-2339.	2.6	58
24	Digital image processing for measurement of residence time distribution in a laboratory extruder. Journal of Food Engineering, 2006, 75, 237-244.	2.7	58
25	Preparation and properties of biodegradable foams from starch acetate and poly(tetramethylene) Tj ETQq $1\ 1\ 0.7$	784314 rgl 5.1	3T <u>/O</u> verlock
26	Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion. Advances in Polymer Technology, 2005, 24, 29-45.	0.8	55
27	Extrusion of starchâ€based looseâ€fill packaging foams: effects of temperature, moisture and talc on physical properties. Packaging Technology and Science, 2008, 21, 171-183.	1.3	49
28	Modeling residence time distribution in a twin-screw extruder as a series of ideal steady-state flow reactors. Journal of Food Engineering, 2008, 84, 441-448.	2.7	48
29	Macromolecular Changes in Extruded Starchâ€Films Plasticized with Glycerol, Water and Stearic Acid. Starch/Staerke, 2009, 61, 256-266.	1.1	46
30	Pretreatment of Corn Stover with Twin-Screw Extrusion Followed by Enzymatic Saccharification. Applied Biochemistry and Biotechnology, 2012, 166, 458-469.	1.4	43
31	Screw Configuration Effects on Corn Starch Expansion During Extrusion. Journal of Food Science, 1994, 59, 895-896.	1.5	41
32	Extrusion Cooking Reduces Recoverability of Fumonisin B ₁ from Extruded Corn Grits. Journal of Food Science, 1998, 63, 696-698.	1.5	41
33	Synthesis and characterization of hazelnut oil-based biodiesel. Industrial Crops and Products, 2009, 29, 473-479.	2.5	41
34	Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Management and Research, 2012, 30, 1066-1071.	2.2	39
35	Properties of extruded starch-based plastic foam. Industrial Crops and Products, 1995, 4, 71-77.	2.5	38
36	Preparation and characterization of tapioca starchâ€poly(lactic acid)â€Cloisite NA ⁺ nanocomposite foams. Journal of Applied Polymer Science, 2008, 110, 2337-2344.	1.3	38

#	Article	IF	CITATIONS
37	Tapioca starchâ€poly(lactic acid)â€Cloisite 30B nanocomposite foams. Polymer Composites, 2009, 30, 665-672.	2.3	37
38	Cyclodextrin Complexed Flavors Retention in Extruded Starches. Journal of Food Science, 1997, 62, 1057-1060.	1.5	35
39	Melt-Intercalated Starch Acetate Nanocomposite Foams as Affected by Type of Organoclay. Cereal Chemistry, 2005, 82, 105-110.	1.1	34
40	Evaluation of Nebraska hybrid hazelnuts: Nut/kernel characteristics, kernel proximate composition, and oil and protein properties. Industrial Crops and Products, 2010, 31, 84-91.	2.5	33
41	Effects of Extruder Die Nozzle Dimensions on Expansion and Micrographic Characterization During Extrusion of Acetylated Starch. Starch/Staerke, 2004, 56, 108-117.	1.1	31
42	Extrusion and Characterization of Starch Films. Cereal Chemistry, 2009, 86, 44-51.	1.1	29
43	Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Industrial Crops and Products, 2009, 29, 427-436.	2.5	27
44	Selected Morphological and Functional Properties of Extruded Acetylated Starchâ^'Polylactic Acid Foams. Industrial & Description Chemistry Research, 2005, 44, 3106-3115.	1.8	26
45	Optimum conditions for dilute acid hydrolysis of hemicellulose in dried distillers grains with solubles. Industrial Crops and Products, 2010, 32, 511-517.	2.5	26
46	Optimization of hydrogen production from supercritical water gasification of crude glycerol-byproduct of biodiesel production. International Journal of Energy Research, 2013, 37, 1600-1609.	2.2	26
47	Nutritional composition and antioxidant activity in hazelnut shells from USâ€grown cultivars. International Journal of Food Science and Technology, 2012, 47, 940-946.	1.3	25
48	The effect of temperature and moisture on the mechanical properties of extruded cornstarch. Journal of Texture Studies, 2013, 44, 225-237.	1,1	25
49	Nutritional and antiâ€nutritional compositions of defatted Nebraska hybrid hazelnut meal. International Journal of Food Science and Technology, 2011, 46, 2022-2029.	1.3	24
50	Effect of eggshell powder as nucleating agent on the structure, morphology and functional properties of normal corn starch foams. Packaging Technology and Science, 2007, 20, 165-172.	1.3	23
51	Starch-stearic Acid Complex Development within Single and Twin Screw Extruders. Journal of Food Science, 1996, 61, 778-782.	1.5	22
52	QUALITY EVALUATION OF DEEP-FAT FRIED ONION RINGS. Journal of Food Quality, 1998, 21, 95-105.	1.4	20
53	An Adaptive Neuroâ€Fuzzy Inference System for Modeling Mechanical Properties of Tapioca Starchâ€Poly(Lactic Acid) Nanocomposite Foams. Starch/Staerke, 2008, 60, 159-164.	1.1	20
54	Fluidized-bed gasification of dairy manure by Box–Behnken design. Waste Management and Research, 2012, 30, 506-511.	2.2	19

#	Article	IF	CITATIONS
55	Evaluation of physicochemical characteristics, nutritional composition and antioxidant capacity of Chinese organic hawthorn berry (<i>Crataegus pinnatifida</i>). International Journal of Food Science and Technology, 2020, 55, 1679-1688.	1.3	18
56	Preparation of highly substituted carboxymethyl starch using a twinâ€screw extruder. Starch/Staerke, 2011, 63, 771-779.	1.1	17
57	High-pressure and thermal processing of cloudy hawthorn berry (Crataegus pinnatifida) juice: Impact on microbial shelf-life, enzyme activity and quality-related attributes. Food Chemistry, 2022, 372, 131313.	4.2	17
58	Physical, Mechanical, and Morphological Characteristics of Extruded Starch Acetate Foams. Journal of Polymers and the Environment, 2005, 13, 221-230.	2.4	16
59	Role of Blowing Agents in Expansion of High-Amylose Starch Acetate During Extrusion. Cereal Chemistry, 2006, 83, 577-583.	1.1	16
60	Extrusion of Starch Acetate with Mixed Blowing Agents. Starch/Staerke, 2004, 56, 484-494.	1.1	15
61	Crystallization characteristics of methyl tallowate and its blends with ethanol and diesel fuel. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 759-763.	0.8	13
62	Extrudates of Starch-Xanthan Gum Mixtures as Affected by Chemical Agents and Irradiation. Journal of Food Science, 1997, 62, 816-820.	1.5	13
63	Starch Acetate-Maleate Mixed Ester Synthesis and Characterization. Cereal Chemistry, 2005, 82, 336-340.	1.1	13
64	Expansion, Morphological, and Mechanical Properties of Starchâ^'Polystyrene Foams Containing Various Additives. Industrial & Engineering Chemistry Research, 2008, 47, 4736-4742.	1.8	12
65	Volatiles Retention as Influenced by Method of Addition during Extrusion Cooking. Journal of Food Science, 1996, 61, 985-990.	1.5	11
66	Functional Properties of Extruded Acetylated Starch–Cellulose Foams. Journal of Polymers and the Environment, 2004, 12, 113-121.	2.4	11
67	Flavor Retention in Pregelatinized and Internally Flavored Starch Extrudates. Cereal Chemistry, 1997, 74, 396-399.	1.1	10
68	Thermal conductivity of granular rice starches. International Journal of Food Properties, 2000, 3, 283-293.	1.3	10
69	Continuous Solventless Extrusion Process for Producing Sodium Carboxymethyl Starch Suitable for Disintegrant Applications in Solid Dosage Forms. Industrial & Engineering Chemistry Research, 2011, 50, 12784-12789.	1.8	10
70	Valorization of hazelnut shells into natural antioxidants by ultrasoundâ€assisted extraction: Process optimization and phenolic composition identification. Journal of Food Process Engineering, 2018, 41, e12692.	1.5	10
71	Physical and Molecular Properties of Re-extruded Starches as Affected by Extruder Screw Configuration. Journal of Food Science, 1996, 61, 596-600.	1.5	9
72	Effects of the properties of blowing agents on the processing and performance of extruded starch acetate. Journal of Applied Polymer Science, 2005, 97, 1880-1890.	1.3	9

#	Article	lF	CITATIONS
73	Composition and oxidative stabilities of oils extracted from hybrid hazelnuts grown in Nebraska, USA. International Journal of Food Science and Technology, 2010, 45, 2329-2336.	1.3	9
74	Characterization of sodium starch glycolate prepared using reactive extrusion and its comparisons with a commercial brand VIVASTARA®P. Industrial Crops and Products, 2013, 41, 324-330.	2.5	9
75	Residence Time Distribution Determination Using Onâ€Line Digital Image Processing. Starch/Staerke, 2009, 61, 146-153.	1.1	8
76	Physical, Mechanical, and Macromolecular Properties of Starch Acetate during Extrusion Foaming Transformationâ€. Industrial & Engineering Chemistry Research, 2006, 45, 3991-4000.	1.8	7
77	Supersaturated Split-Plot Designs. Journal of Quality Technology, 2013, 45, 61-73.	1.8	6
78	Modeling of transport phenomena and melting kinetics of starch in a co-rotating twin-screw extruder. Advances in Polymer Technology, 2006, 25, 22-40.	0.8	5
79	Shrinkage and re-expansion of extruded starch acetate foams. Journal of Applied Polymer Science, 2006, 102, 4264-4268.	1.3	2
80	Compaction of Corn Distillers Dried Grains. Cereal Chemistry, 2008, 85, 158-164.	1.1	2
81	A Fuzzy Inference System (FIS) and Dimensional Analysis for Predicting Energy Consumption and Mean Residence Time in a Twin-Screw Extruder. Journal of Food Process Engineering, 2015, 38, 125-134.	1.5	2
82	Residence Time Distribution and Modeling of Mechanical Properties of Extruded Nanocomposite Foams Using Adaptive Neuroâ€Fuzzy Inference System. Starch/Staerke, 2009, 61, 326-333.	1.1	1