List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6489236/publications.pdf Version: 2024-02-01

RAHIM FAEZ

#	Article	IF	CITATIONS
1	Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons. Journal of Applied Physics, 2012, 111, .	2.5	88
2	Stability Analysis in Graphene Nanoribbon Interconnects. IEEE Electron Device Letters, 2010, 31, 1458-1460.	3.9	81
3	Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices. Journal of Applied Physics, 2011, 110, .	2.5	69
4	COMPACT FORMULAE FOR NUMBER OF CONDUCTION CHANNELS IN VARIOUS TYPES OF GRAPHENE NANORIBBONS AT VARIOUS TEMPERATURES. Modern Physics Letters B, 2012, 26, 1150004.	1.9	38
5	A novel graphene nanoribbon field effect transistor with two different gate insulators. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66, 133-139.	2.7	32
6	Atomistic Study of the Lattice Thermal Conductivity of Rough Graphene Nanoribbons. IEEE Transactions on Electron Devices, 2013, 60, 2142-2147.	3.0	30
7	overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><ml:mi>I</ml:mi></mml:mrow><ml:mrow><ml mathvariant="italic">ON</ml </ml:mrow></mml:msub></mml:mrow> <mml:mo>/</mml:mo> <mml:msub><ml mathvariant="italic">OFF</ml </mml:msub> sub-threshold swing in graphene nanoribbon field-effect transistors using single vacancy defects	nl:mi v> < mml:mi 3.1	>I
8	Superlattices and Microstructures, 2015, 86, 483-492 Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect. Superlattices and Microstructures, 2016, 97, 28-45.	3.1	27
9	Stability analysis in multiwall carbon nanotube bundle interconnects. Microelectronics Reliability, 2012, 52, 3026-3034.	1.7	22
10	Implementation of Open Boundary Problems in Photo-Conductive Antennas by Using Convolutional Perfectly Matched Layers. IEEE Transactions on Antennas and Propagation, 2016, 64, 4919-4922.	5.1	15
11	Crosstalk Stability Analysis in Multilayer Graphene Nanoribbon Interconnects. Circuits, Systems, and Signal Processing, 2013, 32, 2653-2666.	2.0	14
12	A 3D analytical modeling of tri-gate tunneling field-effect transistors. Journal of Computational Electronics, 2016, 15, 820-830.	2.5	14
13	Modeling of a Vertical Tunneling Transistor Based on Graphene–MoS ₂ Heterostructure. IEEE Transactions on Electron Devices, 2017, 64, 3459-3465.	3.0	14
14	Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method. Journal of Electronic Materials, 2013, 42, 2091-2097.	2.2	13
15	A computational study of vertical tunneling transistors based on graphene-WS2 heterostructure. Journal of Applied Physics, 2017, 121, .	2.5	13
16	A comparative study of NEGF and DDMS models in the GAA silicon nanowire transistor. International Journal of Electronics, 2012, 99, 1299-1307.	1.4	12
17	A silicon doped hafnium oxide ferroelectric p–n–p–n SOI tunneling field–effect transistor with steep subthreshold slope and high switching state current ratio. AIP Advances, 2016, 6, 095010.	1.3	12
18	Transient and steady state study of a rear-illuminated 6H-SiC Photoconductive Semiconductor Switch. Optik, 2016, 127, 4615-4620.	2.9	12

#	Article	IF	CITATIONS
19	Effects of Stone-Wales defect on the electronic and transport properties of bilayer armchair graphene nanoribbons. Superlattices and Microstructures, 2016, 100, 739-748.	3.1	10
20	Effect of Stone-Wales defect on an armchair graphene nanoribbon-based photodetector. Superlattices and Microstructures, 2019, 130, 127-138.	3.1	10
21	A New SPICE Macro-Model for Simulation of Single Electron Circuits. Journal of the Korean Physical Society, 2010, 56, 1202-1207.	0.7	10
22	Investigation of quantum conductance in semiconductor single-wall carbon nanotubes: Effect of strain and impurity. Journal of Applied Physics, 2011, 110, .	2.5	9
23	Design and simulation of a high power single mode 1550nm InGaAsP VCSELs. IEICE Electronics Express, 2011, 8, 1096-1101.	0.8	9
24	Analysis of Lattice Temperature Effects on a GaInP/6H-SiC Strained Quantum-Well Lasers. Asian Journal of Chemistry, 2013, 25, 4715-4717.	0.3	8
25	Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness. Journal of Applied Physics, 2016, 120, .	2.5	8
26	Performance improvement of junctionless field effect transistors using p-GaAs/AlGaAs heterostructure. Superlattices and Microstructures, 2017, 110, 305-312.	3.1	8
27	Novel Quantum Hydrodynamic Equations for Semiconductor Devices. Japanese Journal of Applied Physics, 2002, 41, 1300-1304.	1.5	7
28	Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers. Applied Physics A: Materials Science and Processing, 2014, 116, 2057-2063.	2.3	7
29	Analytical Calculation of Energy levels of mono- and bilayer Graphene Quantum Dots Used as Light Absorber in Solar Cells. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
30	Performance comparison of ideal and defected bilayer graphene nanoribbon FETs. Superlattices and Microstructures, 2017, 111, 262-272.	3.1	7
31	Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 175-183.	2.7	7
32	An improved macro-model for simulation of single electron transistor (SET) using HSPICE. , 2009, , .		6
33	Small signal circuit modeling for semiconductor self-assembled quantum dot laser. Optical Engineering, 2011, 50, 034202.	1.0	6
34	NUMERICAL INVESTIGATION ON THE TEMPERATURE DEPENDENCE OF THE CYLINDRICAL-GATE-ALL-AROUND Si -NW-FET. Modern Physics Letters B, 2011, 25, 2269-2278.	1.9	6
35	Threshold characteristics analysis of InP-based PhC VCSEL with buried tunnel junction. , 2013, , .		6
36	Role of 3D-paired pentagon–heptagon defects in electronic and transport properties of zigzag graphene nanoribbons. Applied Physics A: Materials Science and Processing, 2014, 116, 295-301.	2.3	6

#	Article	IF	CITATIONS
37	Minimum length modulator design with a graphene-based plasmonic waveguide. Applied Optics, 2017, 56, 4926.	2.1	6
38	Computational study of spin caloritronics in a pristine and defective antimonene nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114083.	2.7	6
39	Using Superlattice Structure in the Source of GNRFET to Improve Its Switching Performance. IEEE Transactions on Electron Devices, 2020, 67, 1334-1339.	3.0	6
40	Tunable spherical graphene surface plasmon amplification by stimulated emission of radiation. Journal of Nanophotonics, 2019, 13, 1.	1.0	6
41	Graphene-Based Antidots for Thermoelectric Applications. Journal of the Electrochemical Society, 2011, 158, K213.	2.9	5
42	The effect of structural defects on the electron transport of MoS2 nanoribbons based on density functional theory. Journal of Theoretical and Applied Physics, 2019, 13, 55-62.	1.4	5
43	Engineered Nanopores-Based Armchair Graphene Nanoribbon FET With Resonant Tunneling Performance. IEEE Transactions on Electron Devices, 2019, 66, 5339-5346.	3.0	5
44	PERFORMANCE EVALUATION OF SOURCE HETEROJUNCTION STRAINED CHANNEL GATE ALL AROUND NANOWIRE TRANSISTOR. Modern Physics Letters B, 2012, 26, 1250076.	1.9	4
45	Magnetization of bilayer graphene with interplay between monovacancy in each layer. Journal of Applied Physics, 2013, 114, 084313.	2.5	4
46	Dc and microwave noise characteristics of AlGaN/GaN HEMT with AlN and InGaN interlayers. , 2014, , .		4
47	Simulation and investigation of a back-triggered 6H-SiC high power photoconductive switch. , 2015, , .		4
48	Near-room-temperature spin caloritronics in a magnetized and defective zigzag MoS2 nanoribbon. Journal of Computational Electronics, 2020, 19, 137-146.	2.5	4
49	Normal-incidence near-1.55-μm Ge quantum dot photodetectors on Si substrate. , 2001, , .		3
50	Quantum Corrections in the Drift-Diffusion Model. Japanese Journal of Applied Physics, 2007, 46, 7247.	1.5	3
51	NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS. International Journal of Modern Physics B, 2009, 23, 3871-3880.	2.0	3
52	Analysis of carrier dynamic effects in transistor lasers. Optical Engineering, 2012, 51, 024202.	1.0	3
53	The noise equivalent circuit model of quantum-dot lasers. Journal of Russian Laser Research, 2012, 33, 217-226.	0.6	3
54	A novel thermo-photovoltaic cell with quantum-well for high open circuit voltage. Superlattices and Microstructures, 2015, 83, 61-70.	3.1	3

#	Article	IF	CITATIONS
55	Full-Quantum Simulation of Graphene Self-Switching Diodes. Chinese Physics Letters, 2019, 36, 067202.	3.3	3
56	Local impact of Stone–Wales defect on a single layer GNRFET. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126170.	2.1	3
57	Modeling of a vertical tunneling transistor based on Gr-hBN- <i><i>χ</i></i> 3 borophene heterostructure. Journal of Applied Physics, 2022, 132, 034302.	2.5	3
58	Efficient implementation of the convective terms in the hydrodynamic equations. Computer Methods in Applied Mechanics and Engineering, 2005, 194, 969-978.	6.6	2
59	Full quantum mechanical simulation of a novel nanoscale DG-MOSFET: 2D NEGF approach. , 2007, , .		2
60	A new SPICE macro-model for simulation of single electron circuits. , 2009, , .		2
61	The non-equilibrium Green's function (NEGF) simulation of nanoscale lightly doped drain and source double gate MOSFETs. , 2012, , .		2
62	Large signal analysis of double quantum well transistor laser. Optical and Quantum Electronics, 2013, 45, 389-399.	3.3	2
63	Doped silicon quantum dots as sources of coherent surface plasmons. Journal of Optics (United) Tj ETQq1 1 0.	784314 rgE 2.2	3T /Overlock 2
64	Tightâ€binding model for the electronic properties of buckled triangular borophene. Micro and Nano Letters, 2019, 14, 992-994.	1.3	2
65	The most optimal barrier height of InGaN light-emitting diodes. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
66	Lateral BN-BCN Heterostructure Tunneling Transistor with Large Current Modulation. ACS Applied Electronic Materials, 2022, 4, 3520-3524.	4.3	2
67	Investigation of breakdown voltage in InAlAs/InGaAs/InP HEMTs with different structures. IEICE Electronics Express, 2010, 7, 1447-1452.	0.8	1
68	A small signal circuit model of two mode InAs/GaAs quantum dot laser. IEICE Electronics Express, 2011, 8, 245-251.	0.8	1
69	TRIPLE-TUNNEL JUNCTION SINGLE ELECTRON TRANSISTOR (TTJ-SET). Modern Physics Letters B, 2011, 25, 1487-1501.	1.9	1
70	Large Signal Circuit Model of Two-Section Gain Lever Quantum Dot Laser. Chinese Physics Letters, 2012, 29, 114207.	3.3	1
71	Effect of Varying Aspect Ratio on Relative Stability for Graphene Nanoribbon Interconnects. Applied Mechanics and Materials, 0, 229-231, 205-209.	0.2	1

72 Compare noise characteristic of DC-HEMT and HEMT. , 2013, , .

1

#	Article	IF	CITATIONS
73	Effect of Stone-Wales defects on electronic properties of armchair graphene nanoribbons. , 2013, , .		1
74	A seamless-pitched graphene nanoribbon field effect transistor. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 414-420.	2.7	1
75	A novel organic–inorganic hybrid tandem solar cell with inverted structure. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	1
76	Numerical simulation of vertical tunneling transistor with bilayer graphene as source and drain regions. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700155.	1.8	1
77	Investigation of the electronic structure of tetragonal B3N3 under pressure. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	1
78	Simulation analysis of inverted organic solar cells with grating structure: Undesirable effects of high absorption near grating anode. Optik, 2018, 154, 453-458.	2.9	1
79	A Functional Study of a Bilayer Graphene Nanoribbon FET With Four Different Gate Insulators. IEEE Nanotechnology Magazine, 2019, 18, 890-895.	2.0	1
80	GNRFET with superlattice source, channel, and drain: SLSCD-GNRFET. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 131, 114728.	2.7	1
81	Fast three-dimensional super-resolution photoacoustic microscopy imaging. Optical Engineering, 2021, 60, .	1.0	1
82	Quantum hydrodynamic equations with quantum corrected potential [RTD simulation]. , 0, , .		0
83	Two-dimensional quantum simulation of scaling effects in ultrathin body MOSFET structure: NEGF approach. , 2007, , .		0
84	Charge controlling in nanoscale shielded channel DG-MOSFET: A quantum simulation. , 2007, , .		0
85	Hydrogen-passivated graphene antidot structures for thermoelectric applications. , 2011, , .		0
86	An investigation of ZGNR-based transistors. , 2011, , .		0
87	Improving Elmore Model of RLC Networks for Applying to SWCNT Interconnects. Applied Mechanics and Materials, 0, 110-116, 5078-5084.	0.2	0
88	INTRODUCING THE AlGaNâ^•GaNâ^•InAlGaNâ^•GaN DH-HEMT STRUCTURE AND IT IS FUNCTIONAL ANALYSIS. AIP Conference Proceedings, 2011, , .	0.4	0
89	Reduced Master Equation for Modeling of Ferromagnetic Single-Electron Transistor. Applied Mechanics and Materials, 0, 110-116, 3103-3110.	0.2	0
90	An Investigation of the Geometrical Effects on the Thermal Conductivity of Graphene Antidot Lattices. ECS Transactions, 2011, 35, 185-192.	0.5	0

#	Article	IF	CITATIONS
91	Detemining the Thickness of Barriers and Well of Resonance Tunneling Diodes by Specified I-V Characteristic. Applied Mechanics and Materials, 0, 110-116, 5464-5470.	0.2	0
92	Electronic features of rippled graphene. , 2012, , .		0
93	Effect of Varying Dielectric Constant on Relative Stability for Graphene Nanoribbon Interconnects. Applied Mechanics and Materials, 0, 229-231, 201-204.	0.2	0
94	Simulation of deep level traps effects in quantum well transistor laser. Journal of Computational Electronics, 2013, 12, 812-815.	2.5	0
95	Spin effect on band structure of zigzag and armchair graphene nanoribbones with Stone-Wales defect. , 2013, , .		0
96	Digital-to-time converter using set in HSPICE. , 2015, , .		0
97	Spin FET Based on Graphene Nanoribbon in the Presence of Surface Roughness. IEEE Transactions on Electron Devices, 2017, 64, 3437-3442.	3.0	0
98	Effect of hotspot on THz radiation from Bi2Sr2CaCu2O8 intrinsic Josephson junctions. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	0
99	Pressure effect on the mechanical and electronic properties of B3N3: A first-principle study. Physica C: Superconductivity and Its Applications, 2018, 548, 50-54.	1.2	0
100	Circuit Modeling of the Modulator Based on a Plasmonic Waveguide. Journal of Nanoscience and Nanotechnology, 2019, 19, 5601-5607.	0.9	0
101	Analysis and simulation of asymmetrical nanoscale self-switching transistor. International Journal of Modelling and Simulation, 0, , 1-7.	3.3	0
102	Influence of Physical Parameters on Microwave Noise Characteristics of Al0.3Ga0.7N/Al0.05Ga0.95N/GaN Composite-Channel HEMTs. International Journal of Applied Physics and Mathematics, 2013, , 442-445.	0.3	0
103	Performance optimization of a plasmonic coupler based on a lossy transmission line. Journal of Nanophotonics, 2018, 12, 1.	1.0	0