List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/648821/publications.pdf Version: 2024-02-01

		81839	138417
112	3,979	39	58
papers	citations	h-index	g-index
112	112	112	2572
all docs	docs citations	times ranked	citing authors

DEDE COU

#	Article	IF	CITATIONS
1	Effect of sodium chloride replacement on some characteristics of fermented sausages. Meat Science, 2003, 65, 833-839.	2.7	165
2	Potassium chloride, potassium lactate and glycine as sodium chloride substitutes in fermented sausages and in dry-cured pork loin. Meat Science, 1996, 42, 37-48.	2.7	158
3	Consumer attitude towards sodium reduction in meat products and acceptability of fermented sausages with reduced sodium content. Meat Science, 2006, 73, 484-490.	2.7	125
4	Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. Meat Science, 2009, 82, 213-218.	2.7	108
5	The influence of meat pH on mechanical and sensory textural properties of dry-cured ham. Meat Science, 1999, 52, 267-273.	2.7	104
6	Texture parameters of dry-cured ham m. biceps femoris samples dried at different levels as a function of water activity and water content. Meat Science, 2005, 69, 249-254.	2.7	104
7	Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Science, 2005, 70, 579-587.	2.7	104
8	Sensory characterisation and consumer acceptability of small calibre fermented sausages with 50% substitution of NaCl by mixtures of KCl and potassium lactate. Meat Science, 2008, 80, 1225-1230.	2.7	104
9	Effect of pH24, NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Science, 2006, 72, 185-194.	2.7	95
10	Physical and chemical changes in different zones of normal and PSE dry cured ham during processing. Food Chemistry, 1995, 52, 63-69.	4.2	91
11	Technologies to shorten the drying period of dry-cured meat products. Meat Science, 2007, 77, 81-89.	2.7	89
12	NaCl content and temperature effects on moisture diffusivity in the Gluteus medius muscle of pork ham. Meat Science, 2003, 63, 29-34.	2.7	77
13	Effects of Temperature During the Last Month of Ageing and of Salting Time on Dry-Cured Ham Aged for Six Months. Journal of the Science of Food and Agriculture, 1997, 74, 193-198.	1.7	73
14	Study of the Physicochemical and Sensorial Characteristics of Dry-Cured Hams in Three Pig Genetic Types. Journal of the Science of Food and Agriculture, 1996, 70, 526-530.	1.7	71
15	Sex and crossbreed effects on the characteristics of dry-cured ham. Meat Science, 1995, 40, 21-31.	2.7	69
16	Colour modification in a cured meat model dried by Quick-Dry-Slice process® and high pressure processed as a function of NaCl, KCl, K-lactate and water contents. Innovative Food Science and Emerging Technologies, 2012, 13, 69-74.	2.7	69
17	The effect of sodium chloride content and temperature on pork meat isotherms. Meat Science, 2000, 55, 291-295.	2.7	66
18	Physical properties of sodium alginate solutions and edible wet calcium alginate coatings. LWT - Food Science and Technology, 2015, 64, 212-219.	2.5	61

#	Article	IF	CITATIONS
19	Technological and sensorial evaluation of Lactobacillus strains as starter cultures in fermented sausages. International Journal of Food Microbiology, 1996, 32, 173-183.	2.1	60
20	Water transfer analysis in pork meat supported by NMR imaging. Meat Science, 2004, 67, 169-178.	2.7	58
21	Non-destructive estimation of moisture, water activity and NaCl at ham surface during resting and drying using NIR spectroscopy. Food Chemistry, 2011, 129, 601-607.	4.2	58
22	DESCRIPTIVE ANALYSIS OF TOASTED ALMONDS: A COMPARISON BETWEEN EXPERT AND SEMI-TRAINED ASSESSORS. Journal of Sensory Studies, 1997, 12, 39-54.	0.8	56
23	High pressure applied to frozen ham at different process stages. 2. Effect on the sensory attributes and on the colour characteristics of dry-cured ham. Meat Science, 2007, 75, 21-28.	2.7	54
24	Profiles of water content, water activity and texture in crusted dry-cured loin and in non-crusted dry-cured loin. Meat Science, 2005, 69, 519-525.	2.7	53
25	Meat pH and meat fibre direction effects on moisture diffusivity in salted ham muscles dried at 5°C. Meat Science, 2002, 61, 25-31.	2.7	52
26	Feasibility of NIR interactance hyperspectral imaging for on-line measurement of crude composition in vacuum packed dry-cured ham slices. Meat Science, 2013, 95, 250-255.	2.7	52
27	Prediction of salt and water content in dry-cured hams by computed tomography. Journal of Food Engineering, 2010, 96, 80-85.	2.7	51
28	Feasibility study of smartphone-based Near Infrared Spectroscopy (NIRS) for salted minced meat composition diagnostics at different temperatures. Food Chemistry, 2019, 278, 314-321.	4.2	50
29	Instrumental evaluation of defective texture in dry-cured hams. Meat Science, 2007, 76, 536-542.	2.7	49
30	The effects of freezing, meat pH and storage temperature on the formation of white film and tyrosine crystals in dry-cured hams. Journal of the Science of Food and Agriculture, 1994, 66, 279-282.	1.7	48
31	NIR technology for on-line determination of superficial aw and moisture content during the drying process of fermented sausages. Food Chemistry, 2012, 135, 1750-1755.	4.2	47
32	Factors affecting dry-cured ham consumer acceptability. Meat Science, 2013, 95, 652-657.	2.7	47
33	Reduction of NaCl content in restructured dry-cured hams: Post-resting temperature and drying level effects on physicochemical and sensory parameters. Meat Science, 2009, 83, 390-397.	2.7	46
34	Comparison of five types of pig crosses. II. fresh meat quality and sensory characteristics of dry cured ham. Livestock Science, 1994, 40, 179-185.	1.2	44
35	Softness in dry-cured porcine biceps femoris muscles in relation to meat quality characteristics and processing conditions. Meat Science, 2007, 77, 662-669.	2.7	44
36	Effect of the relative humidity of drying air during the resting period on the composition and appearance of dry-cured ham surface. Meat Science, 2003, 65, 1275-1280.	2.7	43

#	Article	IF	CITATIONS
37	Emerging thermal imaging techniques for seed quality evaluation: Principles and applications. Food Research International, 2020, 131, 109025.	2.9	43
38	Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness. Meat Science, 2011, 88, 657-667.	2.7	41
39	Sensory characterisation and consumer acceptability of potassium chloride and sunflower oil addition in small-caliber non-acid fermented sausages with a reduced content of sodium chloride and fat. Meat Science, 2016, 112, 9-15.	2.7	41
40	Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 1. Microscopic analysis of muscles. Meat Science, 2013, 94, 408-416.	2.7	40
41	Implementation of NIR technology for at-line rapid detection of sunflower oil adulterated with mineral oil. Journal of Food Engineering, 2018, 230, 18-27.	2.7	38
42	Effect of a 10-day ageing at 30°C on the texture of dry-cured hams processed at temperatures up to 18°C in relation to raw meat pH and salting time. Meat Science, 2008, 80, 1333-1339.	2.7	37
43	Feasibility of near-infrared spectroscopy to predict aw and moisture and NaCl contents of fermented pork sausages. Meat Science, 2010, 85, 325-330.	2.7	37
44	High pressure applied to frozen ham at different process stages. 1. Effect on the final physicochemical parameters and on the antioxidant and proteolytic enzyme activities of dry-cured ham. Meat Science, 2007, 75, 12-20.	2.7	36
45	Beliefs and attitudes of butchers and consumers towards dry-cured ham. Meat Science, 2008, 80, 1005-1012.	2.7	34
46	Non-destructive analysis of aw, salt and water in dry-cured hams during drying process by means of computed tomography. Journal of Food Engineering, 2010, 101, 187-192.	2.7	33
47	Dielectric properties of milk during ultra-heat treatment. Journal of Food Engineering, 2018, 219, 137-146.	2.7	33
48	Texture changes in dry-cured ham pieces by mild thermal treatments at the end of the drying process. Meat Science, 2008, 80, 231-238.	2.7	32
49	K-lactate and high pressure effects on the safety and quality of restructured hams. Meat Science, 2012, 91, 56-61.	2.7	32
50	Comparison of five types of pig crosses. I. growth and carcass traits. Livestock Science, 1994, 40, 171-178.	1.2	31
51	Moisture diffusivity in the lean tissue of dry-cured ham at different process times. Meat Science, 2004, 67, 203-209.	2.7	31
52	Non-destructive determination of fat content in green hams using ultrasound and X-rays. Meat Science, 2015, 104, 37-43.	2.7	30
53	Tools for Studying Dry-Cured Ham Processing by Using Computed Tomography. Journal of Agricultural and Food Chemistry, 2012, 60, 241-249.	2.4	26
54	Salting, drying and sensory quality of dry-cured hams subjected to different pre-salting treatments: Skin trimming and pressing. Meat Science, 2012, 90, 386-392.	2.7	25

#	Article	IF	CITATIONS
55	Physico-chemical and sensory property changes in almonds of Desmayo Largueta variety during toasting / Cambios en las propiedades fÃsico-quÃmicas y sensoriales de almendras de la variedad Desmayo Largueta durante el tostado. Food Science and Technology International, 2000, 6, 1-7.	1.1	24
56	lon uptakes and diffusivities in pork meat brine-salted with NaCl and K-lactate. LWT - Food Science and Technology, 2010, 43, 1226-1233.	2.5	24
57	Simulation of simultaneous water and salt diffusion in dry fermented sausages by the Stefan–Maxwell equation. Journal of Food Engineering, 2010, 97, 311-318.	2.7	22
58	Desorption isotherms for pork meat at different NaCt contents and temperatures. Drying Technology, 2000, 18, 723-746.	1.7	21
59	PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams—III. Associations in Slovenian dry-cured ham KraÅįki prÅįut and their dependence on processing. Meat Science, 2012, 92, 360-365.	2.7	21
60	Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 2. Composition of muscles. Meat Science, 2013, 94, 417-423.	2.7	21
61	High pressure induces changes in texture and microstructure of muscles in dry-cured hams. Innovative Food Science and Emerging Technologies, 2014, 22, 63-69.	2.7	21
62	Effect of high pressure processing temperature on dry-cured hams with different textural characteristics. Meat Science, 2019, 152, 127-133.	2.7	21
63	Assessing the textural defect of pastiness in dry-cured pork ham using chemical, microstructural, textural and ultrasonic analyses. Journal of Food Engineering, 2020, 265, 109690.	2.7	21
64	Sorption isotherms of salted minced pork and of lean surface of dry-cured hams at the end of the resting period using KCl as substitute for NaCl. Meat Science, 2007, 77, 643-648.	2.7	20
65	X-ray absorptiometry for non-destructive monitoring of the salt uptake in bone-in raw hams during salting. Food Control, 2015, 47, 37-42.	2.8	20
66	X-ray absorptiometry and ultrasound technologies for non-destructive compositional analysis of dry-cured ham. Journal of Food Engineering, 2015, 155, 62-68.	2.7	19
67	Association of PRKAG3 and CAST genetic polymorphisms with traits of interest in dry-cured ham production: Comparative study in France, Slovenia and Spain. Livestock Science, 2010, 128, 60-66.	0.6	18
68	Influence of surfactants and proteins on the properties of wet edible calcium alginate meat coatings. Food Research International, 2018, 108, 539-550.	2.9	18
69	Fuzzy Control System for a Meat Drying Process. Drying Technology, 2004, 22, 259-267.	1.7	17
70	Feasibility of X-ray microcomputed tomography for microstructure analysis and its relationship with hardness in non-acid lean fermented sausages. Meat Science, 2013, 93, 639-644.	2.7	17
71	Including estimated intramuscular fat content from computed tomography images improves prediction accuracy of dry-cured ham composition. Meat Science, 2014, 96, 943-947.	2.7	17
72	Influence of processing conditions on the properties of alginate solutions and wet edible calcium alginate coatings. LWT - Food Science and Technology, 2016, 74, 271-279.	2.5	17

#	Article	IF	CITATIONS
73	Radio frequency cooking of pork hams followed with conventional steam cooking. LWT - Food Science and Technology, 2020, 123, 109104.	2.5	17
74	Estimation of dry-cured ham composition using dielectric time domain reflectometry. Meat Science, 2013, 93, 873-879.	2.7	16
75	Salt uptake and water loss in hams with different water contents at the lean surface and at different salting temperatures. Meat Science, 2014, 96, 65-72.	2.7	16
76	Computer image analysis for intramuscular fat segmentation in dry-cured ham slices using convolutional neural networks. Food Control, 2019, 106, 106693.	2.8	16
77	On-Line Determination of Water Activity at the Lean Surface of Meat Products During Drying and Its Relationship with the Crusting Development. Drying Technology, 2005, 23, 1641-1652.	1.7	15
78	Rehydration kinetics at 5 and 15°C of dry salted meat. Journal of Food Engineering, 2012, 110, 465-471.	2.7	15
79	The effect of high pressure and residual oxygen on the color stability of minced cured restructured ham at different levels of drying, pH, and NaCl. Meat Science, 2013, 95, 433-443.	2.7	15
80	Co-extruded alginate as an alternative to collagen casings in the production of dry-fermented sausages: Impact of coating composition. Meat Science, 2020, 169, 108184.	2.7	15
81	PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams—ll. Associations in French dry-cured ham Jambon de Bayonne and their dependence on salt reduction. Meat Science, 2012, 92, 354-359.	2.7	14
82	Effect of air relative humidity on ham rind and subcutaneous salted fat during the resting period. Meat Science, 2001, 58, 65-68.	2.7	13
83	PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams — I. Associations in Spanish dry-cured ham JamĂ³n Serrano. Meat Science, 2012, 92, 346-353.	2.7	13
84	Texture characterization of dry-cured ham using multi energy X-ray analysis. Food Control, 2018, 89, 46-53.	2.8	13
85	Fuzzy Control System in Drying Process of Fermented Sausages. Drying Technology, 2005, 23, 2055-2069.	1.7	11
86	Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry: A tool to predict pork quality. Meat Science, 2013, 95, 688-693.	2.7	11
87	Estimation of NaCl diffusivity by computed tomography in the Semimembranosus muscle during salting of fresh and frozen/thawed hams. LWT - Food Science and Technology, 2013, 51, 275-280.	2.5	11
88	The effect of panel selection and training on external preference mapping using a low number of samples / Efecto de la selección y entrenamiento de los catadores sobre la cartografÃa externa de preferencias, utilizando un número reducido de muestras. Food Science and Technology International, 1998, 4, 85-90.	1.1	10
89	Relationships between ovulation rate, embryo survival and litter size in rabbits. Animal Science, 1992, 55, 271-276.	1.3	9
90	Analysis of raw hams using SELDI-TOF-MS to predict the final quality of dry-cured hams. Meat Science, 2013, 93, 233-239.	2.7	9

#	Article	IF	CITATIONS
91	Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response. Meat Science, 2015, 100, 91-96.	2.7	9
92	Instrumental texture analysis on the surface of dry-cured ham to define the end of the process. Meat Science, 2021, 172, 108334.	2.7	9
93	Effectiveness of specularity removal from hyperspectral images on the quality of spectral signatures of food products. Journal of Food Engineering, 2021, 289, 110148.	2.7	9
94	Actitud de los consumidores frente a los productos cárnicos con un menor contenido en sodio. Food Science and Technology International, 1998, 4, 263-275.	1.1	8
95	Desorption isotherms of salted minced pork using K-lactate as a substitute for NaCl. Meat Science, 2009, 83, 642-646.	2.7	8
96	Effect of dry-cured ham composition on X-ray multi energy spectra. Food Control, 2016, 70, 41-47.	2.8	8
97	Combined Effect of Temperature and Oil and Salt Contents on the Variation of Dielectric Properties of a Tomato-Based Homogenate. Foods, 2021, 10, 3124.	1.9	8
98	Evaluation of potential nirs to predict pastures nutritive value. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	7
99	Processing parameters involved in the development of texture and tyrosine precipitates in dry-cured ham: Modelisation of texture development. Meat Science, 2021, 172, 108362.	2.7	7
100	Perfil sensorial de diferentes muestras de nuez (Juglans regia L.)/Sensory profiles of different walnuts (Juglans regia L.). Food Science and Technology International, 2000, 6, 207-216.	1.1	6
101	Selection of representative hyperspectral data and image pretreatment for model development in heterogeneous samples: A case study in sliced dry-cured ham. Biosystems Engineering, 2021, 201, 67-82.	1.9	6
102	Dielectric Heating: A Review of Liquid Foods Processing Applications. Food Reviews International, 2023, 39, 5684-5702.	4.3	5
103	Bias and future trends of pig carcass classification methods. Food Chemistry, 2000, 69, 457-460.	4.2	4
104	Dry-cured ham <i>KraÅiki prÅiut</i> seasoning losses as affected by PRKAG3 and CAST polymorphisms. Italian Journal of Animal Science, 2011, 10, e6.	0.8	4
105	Partial scanning using computed tomography for fat weight prediction in green hams: Scanning protocols and modelling. Journal of Food Engineering, 2014, 142, 146-152.	2.7	4
106	Implementation of a quality by design approach in the potato chips frying process. Journal of Food Engineering, 2019, 260, 22-29.	2.7	4
107	Drying Control of Cured Sausages Through Online Measurement of Product Quality. Drying Technology, 2007, 25, 1809-1817.	1.7	3
108	Influence of the meat pH on certain sensorial characteristics of dry cured ham. Food Quality and Preference, 1993, 4, 103.	2.3	2

		Pere Gou		
#	Article		IF	CITATIONS
109	The effect of air relative humidity on the appearance and structure of subcutaneous po or treated with NaCl, KCl or K-lactate. LWT - Food Science and Technology, 2012, 47, 1	ork fat unsalted 33-137.	2.5	2
110	Hyperspectral imaging techniques for noncontact sensing of food quality. , 2021, , 345	5-379.		2
111	Hyperspectral Imaging for Assessing the Quality Attributes of Cured Pork Loin. , 2018,			1
112	Green ham pH value affects proteomic profile of dry-cured ham. Italian Journal of Anima 2010, 9, .	al Science,	0.8	0