Havovi Chichger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486777/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Investigating the Opposing Effect of Two Different Green Tea Supplements on Oxidative Stress, Mitochondrial Function and Cell Viability in HepG2 Cells. Journal of Dietary Supplements, 2022, 19, 459-482.	1.4	1
2	Agonists for Bitter Taste Receptors T2R10 and T2R38 Attenuate LPS-Induced Permeability of the Pulmonary Endothelium in vitro. Frontiers in Physiology, 2022, 13, 794370.	1.3	3
3	The Impact of Decaffeinated Green Tea Extract on Fat Oxidation, Body Composition and Cardio-Metabolic Health in Overweight, Recreationally Active Individuals. Nutrients, 2021, 13, 764.	1.7	17
4	Dietâ€induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiologica, 2021, 232, e13650.	1.8	4
5	Artificial Sweeteners Negatively Regulate Pathogenic Characteristics of Two Model Gut Bacteria, E. coli and E. faecalis. International Journal of Molecular Sciences, 2021, 22, 5228.	1.8	35
6	Saccharin and Sucralose Protect the Glomerular Microvasculature In Vitro against VEGF-Induced Permeability. Nutrients, 2021, 13, 2746.	1.7	4
7	Extracellular vesicles released from p18 overexpressing pulmonary endothelial cells are barrier protective – potential implications for acute respiratory distress syndrome. Pulmonary Circulation, 2020, 10, 1-13.	0.8	5
8	Lutein and zeaxanthin attenuates VEGF-induced neovascularisation in human retinal microvascular endothelial cells through a Nox4-dependent pathway. Experimental Eye Research, 2020, 197, 108104.	1.2	16
9	Artificial Sweeteners Disrupt Tight Junctions and Barrier Function in the Intestinal Epithelium through Activation of the Sweet Taste Receptor, T1R3. Nutrients, 2020, 12, 1862.	1.7	40
10	Sore eyes as the most significant ocular symptom experienced by people with COVID-19: a comparison between pre-COVID-19 and during COVID-19 states. BMJ Open Ophthalmology, 2020, 5, e000632.	0.8	13
11	Endosomes and Autophagy: Regulators of Pulmonary Endothelial Cell Homeostasis in Health and Disease. Antioxidants and Redox Signaling, 2019, 31, 994-1008.	2.5	18
12	Activation of the sweet taste receptor T1R3 by sucralose attenuates VEGF-induced vasculogenesis in a cell model of the retinal microvascular endothelium. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 71-81.	1.0	14
13	Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L165-L176.	1.3	21
14	Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Experimental Physiology, 2016, 101, 731-742.	0.9	29
15	Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 769-781.	1.4	12
16	Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L700-L709.	1.3	6
17	p18, a novel adaptor protein, regulates pulmonary endothelial barrier function <i>via</i> enhanced endocytic recycling of VEâ€cadherin. FASEB Journal, 2015, 29, 868-881.	0.2	25
18	SH2 Domain-Containing Protein Tyrosine Phosphatase 2 and Focal Adhesion Kinase Protein Interactions Regulate Pulmonary Endothelium Barrier Function. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 695-707.	1.4	23

HAVOVI CHICHGER

#	Article	IF	CITATIONS
19	Protease stimulation of renal sodium reabsorption in vivo by activation of the collecting duct epithelial sodium channel (ENaC). Nephrology Dialysis Transplantation, 2013, 28, 839-845.	0.4	7
20	Genetic disruption of protein kinase Cî´reduces endotoxin-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L880-L888.	1.3	25
21	Protection against LPS-Induced Pulmonary Edema through the Attenuation of Protein Tyrosine Phosphatase–1B Oxidation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 623-632.	1.4	30
22	On the Mechanism of Sequence-specific DNA-dependent Acetylation of p53: The Acetylation Motif is Exposed upon DNA Binding. Journal of Molecular Biology, 2006, 357, 442-456.	2.0	23