
Marinus J M Smulders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indicators for biodiversity in agricultural landscapes: a panâ€European study. Journal of Applied Ecology, 2008, 45, 141-150.	1.9	530
2	Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics, 2006, 7, 1.	1.2	445
3	Genetic Diversity and the Survival of Populations. Plant Biology, 2000, 2, 379-395.	1.8	335
4	New Insight into the History of Domesticated Apple: Secondary Contribution of the European Wild Apple to the Genome of Cultivated Varieties. PLoS Genetics, 2012, 8, e1002703.	1.5	334
5	The domestication and evolutionary ecology of apples. Trends in Genetics, 2014, 30, 57-65.	2.9	261
6	Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theoretical and Applied Genetics, 1997, 94, 264-272.	1.8	251
7	Natural Variation in Toxicity of Wheat: Potential for Selection of Nontoxic Varieties for Celiac Disease Patients. Gastroenterology, 2005, 129, 797-806.	0.6	230
8	A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants, 2018, 4, 473-484.	4.7	224
9	Opportunities for Products of New Plant Breeding Techniques. Trends in Plant Science, 2016, 21, 438-449.	4.3	216
10	Epigenetics in plant tissue culture. Plant Growth Regulation, 2011, 63, 137-146.	1.8	190
11	Development and characterization of microsatellite markers in black poplar (Populus nigra L.). Theoretical and Applied Genetics, 2000, 101, 317-322.	1.8	170
12	Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theoretical and Applied Genetics, 2008, 117, 857-871.	1.8	165
13	Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theoretical and Applied Genetics, 2010, 121, 1527-1539.	1.8	149
14	AFLP markers as a tool to reconstruct complex relationships: A case study in <i>Rosa</i> (Rosaceae). American Journal of Botany, 2008, 95, 353-366.	0.8	143
15	Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.). Molecular Ecology Notes, 2001, 1, 188-190.	1.7	137
16	Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity, 2001, 86, 598-608.	1.2	135
17	Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Molecular Ecology, 2003, 12, 845-857.	2.0	134
18	Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theoretical and Applied Genetics, 2003, 106, 277-286.	1.8	133

#	Article	IF	CITATIONS
19	Efficient targeting of plant disease resistance loci using NBS profiling. Theoretical and Applied Genetics, 2004, 109, 384-393.	1.8	129
20	Identifying, managing and monitoring conflicts between forest biodiversity conservation and other human interests in Europe. Forest Policy and Economics, 2005, 7, 877-890.	1.5	118
21	Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: Consequences for conservation and restoration. Forest Ecology and Management, 2008, 255, 1388-1399.	1.4	116
22	Plant functional group composition and largeâ€scale species richness in European agricultural landscapes. Journal of Vegetation Science, 2008, 19, 3-14.	1.1	111
23	Towards a unified genetic map for diploid roses. Theoretical and Applied Genetics, 2011, 122, 489-500.	1.8	101
24	polymapR—linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. Bioinformatics, 2018, 34, 3496-3502.	1.8	99
25	Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biology, 2009, 9, 41.	1.6	97
26	Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theoretical and Applied Genetics, 2001, 103, 1283-1292.	1.8	96
27	Development of polysomaty during differentiation in diploid and tetraploid tomato (Lycopersicon) Tj ETQq1 1	0.784314 r 1.7	gBT ₈ /Overlock
28	Postglacial recolonization history of the <scp>E</scp> uropean crabapple (<i>Malus sylvestris) Tj ETQq0 0 0 rg 2249-2263.</i>	BT /Overloc 2.0	k 10 Tf 50 38 86
29	Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landscape Ecology, 2007, 22, 1489-1500.	1.9	84
30	Characterization of microsatellite markers inFagus sylvaticaL. andFagus orientalisLipsky. Molecular Ecology Notes, 2003, 3, 76-78.	1.7	81
31	Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecology Letters, 2008, 11, 235-244.	3.0	79
32	Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biology, 2019, 19, 333.	1.6	75
33	Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.). Frontiers in Plant Science, 2015, 6, 249.	1.7	72
34	Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant Journal, 2017, 90, 330-343.	2.8	72
35	Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theoretical and Applied Genetics, 1995, 91, 1257-1264.	1.8	70
36	Phylogenetic relationships in Betula (Betulaceae) based on AFLP markers. Tree Genetics and Genomes, 2008, 4, 911.	0.6	68

#	Article	IF	CITATIONS
37	A Universal Approach to Eliminate Antigenic Properties of Alpha-Gliadin Peptides in Celiac Disease. PLoS ONE, 2010, 5, e15637.	1.1	68
38	New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnology Reports, 2017, 11, 1-8.	0.9	67
39	A modified extraction protocol enables detection and quantification of celiac disease-related gluten proteins from wheat. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 975-982.	1.2	66
40	Ex-situ conservation of Black poplar in Europe: genetic diversity in nine gene bank collections and their value for nature development. Theoretical and Applied Genetics, 2004, 108, 969-981.	1.8	65
41	Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome, 1994, 37, 375-381.	0.9	64
42	Oats in healthy gluten-free and regular diets: A perspective. Food Research International, 2018, 110, 3-10.	2.9	64
43	Identification of highly polymorphic DNA regions in tomato. Theoretical and Applied Genetics, 1992, 85-85, 239-244.	1.8	63
44	Natural hybridisation between Populus nigra L. and P. x canadensis Moench. Hybrid offspring competes for niches along the Rhine river in the Netherlands. Tree Genetics and Genomes, 2008, 4, 663-675.	0.6	62
45	Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. Journal of Experimental Botany, 2002, 53, 1025-1036.	2.4	61
46	Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats?. New Phytologist, 2009, 183, 667-677.	3.5	59
47	CRISPR/Cas9 Gene Editing of Gluten in Wheat to Reduce Gluten Content and Exposure—Reviewing Methods to Screen for Coeliac Safety. Frontiers in Nutrition, 2020, 7, 51.	1.6	59
48	Microsatellite analysis of Damask rose (Rosa damascena Mill.) accessions from various regions in Iran reveals multiple genotypes. BMC Plant Biology, 2007, 7, 12.	1.6	57
49	Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci. BMC Genomics, 2009, 10, 48.	1.2	57
50	The mode of inheritance in tetraploid cut roses. Theoretical and Applied Genetics, 2012, 125, 591-607.	1.8	57
51	New insights into domestication of carrot from root transcriptome analyses. BMC Genomics, 2014, 15, 895.	1.2	57
52	Title is missing!. Conservation Genetics, 2003, 4, 441-451.	0.8	54
53	Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. Journal of Cereal Science, 2013, 58, 170-177.	1.8	54
54	Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals. Frontiers in Plant Science, 2016, 7, 1798.	1.7	54

#	Article	IF	CITATIONS
55	In the name of the rose: a roadmap for rose research in the genome era. Horticulture Research, 2019, 6, 65.	2.9	53

56 DNA barcoding discriminates the noxious invasive plant species, floating pennywort (<i>Hydrocotyle) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

57	Impact of Urbanization on the Proteome of Birch Pollen and Its Chemotactic Activity on Human Granulocytes. International Archives of Allergy and Immunology, 2010, 151, 46-55.	0.9	52
58	In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Molecular BioSystems, 2010, 6, 2206.	2.9	52
59	Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers. BMC Genetics, 2010, 11, 41.	2.7	51
60	Seven different genes encode a diverse mixture of isoforms of Bet v 1, the major birch pollen allergen. BMC Genomics, 2006, 7, 168.	1.2	50
61	Development of Wheat With Hypoimmunogenic Gluten Obstructed by the Gene Editing Policy in Europe. Frontiers in Plant Science, 2018, 9, 1523.	1.7	50
62	Reducing the incidence of allergy and intolerance to cereals. Journal of Cereal Science, 2014, 59, 337-353.	1.8	49
63	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2010 – 30 September 2010. Molecular Ecology Resources, 2011, 11, 219-222.	2.2	48
64	Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theoretical and Applied Genetics, 2016, 129, 1711-1724.	1.8	48
65	Characterization of PR-10 genes from eight Betula species and detection of Bet v 1 isoforms in birch pollen. BMC Plant Biology, 2009, 9, 24.	1.6	47
66	Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon—implications for genetic resource management. Theoretical and Applied Genetics, 2004, 108, 1564-1573.	1.8	46
67	Re-sequencing transgenic plants revealed rearrangements at T-DNA inserts, and integration of a short T-DNA fragment, but no increase of small mutations elsewhere. Plant Cell Reports, 2017, 36, 493-504.	2.8	46
68	Metabolism of 1-naphthaleneacetic acid in explants of tobacco: Evidence for release of free hormone from conjugates. Journal of Plant Growth Regulation, 1990, 9, 27-34.	2.8	45
69	Microsatellite markers for the European tree frogHyla arborea. Molecular Ecology, 2000, 9, 1944-1946.	2.0	45
70	Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers. Tree Genetics and Genomes, 2016, 12, 1.	0.6	45
71	Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation. BMC Genomics, 2012, 13, 277.	1.2	43
72	Landscape diversity enhances the resilience of populations, ecosystems and local economy in rural areas. Landscape Ecology, 2015, 30, 193-202.	1.9	43

#	Article	IF	CITATIONS
73	QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicumÂ×ÂS. arcanum cross. Theoretical and Applied Genetics, 2007, 114, 439-450.	1.8	42
74	The influence of perceived benefits on acceptance of GM applications for allergy prevention. Health, Risk and Society, 2008, 10, 263-282.	0.9	42
75	High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. Horticulture Research, 2016, 3, 16052.	2.9	42
76	Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing. BMC Genomics, 2013, 14, 905.	1.2	41
77	Linked vs. unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression. Molecular Ecology, 2006, 16, 243-256.	2.0	40
78	Plant translational genomics: from model species to crops. Molecular Breeding, 2007, 20, 1-13.	1.0	39
79	A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes. BMC Plant Biology, 2013, 13, 51.	1.6	39
80	Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals. Molecular Ecology Resources, 2015, 15, 17-27.	2.2	39
81	Genome editing of polyploid crops: prospects, achievements and bottlenecks. Transgenic Research, 2021, 30, 337-351.	1.3	39
82	Detailed Analysis of the Expression of an Alpha-gliadin Promoter and the Deposition of Alpha-gliadin Protein During Wheat Grain Development. Annals of Botany, 2008, 102, 331-342.	1.4	38
83	What's in a name; Genetic structure in Solanum section Petota studied using population-genetic tools. BMC Evolutionary Biology, 2011, 11, 42.	3.2	38
84	The establishment of â€~essential derivation' among rose varieties, using AFLP. Theoretical and Applied Genetics, 2004, 109, 1718-1725.	1.8	37
85	Efficient distinction of invasive aquatic plant species from nonâ€invasive related species using <scp>DNA</scp> barcoding. Molecular Ecology Resources, 2013, 13, 21-31.	2.2	37
86	First successful reduction of clinical allergenicity of food by genetic modification: <i>Mal d 1</i> -silenced apples cause fewer allergy symptoms than the wild-type cultivar. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1406-1412.	2.7	37
87	Why Oats Are Safe and Healthy for Celiac Disease Patients. Medical Sciences (Basel, Switzerland), 2016, 4, 21.	1.3	37
88	Postglacial migration of Populus nigra L.: lessons learnt from chloroplast DNA. Forest Ecology and Management, 2005, 206, 71-90.	1.4	36
89	Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis. Conservation Genetics, 2011, 12, 1145-1157.	0.8	36
90	Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Research International, 2018, 110, 11-21.	2.9	35

#	Article	IF	CITATIONS
91	Genetic Diversity and the Reintroduction of Meadow Species. Plant Biology, 2000, 2, 447-454.	1.8	34
92	Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell, Tissue and Organ Culture, 2006, 85, 331-344.	1.2	34
93	Consumer attitudes towards hypoallergenic apples that alleviate mild apple allergy. Food Quality and Preference, 2011, 22, 83-91.	2.3	34
94	Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Frontiers in Nutrition, 2020, 7, 29.	1.6	34
95	BASIC PEROXIDASES AND ROOTING IN MICROCUTTINGS OF MALUS. Acta Horticulturae, 1990, , 29-36.	0.1	33
96	Understanding the role of oat β-glucan in oat-based dough systems. Journal of Cereal Science, 2015, 62, 1-7.	1.8	33
97	Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection. Euphytica, 2017, 213, 1.	0.6	33
98	Cytokinins and Flower Bud Formation in Vitro in Tobacco. Plant Physiology, 1990, 92, 565-569.	2.3	32
99	A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (<i>Lactuca sativa</i>) Tj ETQq1 Molecular Ecology, 2012, 21, 2640-2654.	1 0.784314 2.0	rgBT /Overloc 31
100	Effects of landscape structure on genetic diversity of Geum urbanum L. populations in agricultural landscapes. Flora: Morphology, Distribution, Functional Ecology of Plants, 2009, 204, 549-559.	0.6	30
101	Projected climate change causes loss and redistribution of genetic diversity in a model metapopulation of a mediumâ€good disperser. Ecography, 2011, 34, 920-932.	2.1	30
102	Profiling of Nutritional and Health-Related Compounds in Oat Varieties. Foods, 2016, 5, 2.	1.9	29
103	Regional gene flow and population structure of the wind-dispersed plant species Hypochaeris radicata (Asteraceae) in an agricultural landscape. Molecular Ecology, 2006, 15, 1749-1758.	2.0	28
104	Microsatellite variation and population structure of a recovering Tree frog (Hyla arborea L.) metapopulation. Conservation Genetics, 2006, 7, 825-835.	0.8	28
105	Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Molecular Breeding, 2009, 24, 63-76.	1.0	28
106	AFLP-based population structure analysis as a means to validate the complex taxonomy of dogroses (Rosa section Caninae). Molecular Phylogenetics and Evolution, 2013, 67, 547-559.	1.2	28
107	The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat. Journal of Horticultural Science and Biotechnology, 2013, 88, 85-92.	0.9	28
108	Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments. Ecology and Evolution, 2014, 4, 2395-2409.	0.8	28

#	Article	IF	CITATIONS
109	Development of the ClutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ-irradiation or CRISPR/Cas9. Journal of Cereal Science, 2019, 88, 157-166.	1.8	28
110	Polar Transport of 1-Naphthaleneacetic Acid Determines the Distribution of Flower Buds on Explants of Tobacco. Plant Physiology, 1988, 88, 752-756.	2.3	27
111	Auxin Regulation of Flower Bud Formation in Tobacco Explants. Journal of Experimental Botany, 1988, 39, 451-459.	2.4	27
112	Dispersal patterns of Lonicera periclymenum determined by genetic analysis. Molecular Ecology, 1998, 7, 165-174.	2.0	27
113	Dough quality of bread wheat lacking α-gliadins with celiac disease epitopes and addition of celiac-safe avenins to improve dough quality. Journal of Cereal Science, 2011, 53, 206-216.	1.8	27
114	Genetic diversity and differentiation in roses: A garden rose perspective. Scientia Horticulturae, 2013, 162, 320-332.	1.7	27
115	Microsatellite genotyping of carnation varieties. Theoretical and Applied Genetics, 2003, 106, 1191-1195.	1.8	26
116	Past and current gene flow in the selfing, wind-dispersed species Mycelis muralis in western Europe. Molecular Ecology, 2004, 13, 1391-1407.	2.0	26
117	Phylogenetics of Stelis and closely related genera (Orchidaceae: Pleurothallidinae). Plant Systematics and Evolution, 2013, 299, 151-176.	0.3	26
118	The competence of cells for cell division and regeneration in tobacco explants depends on cellular location, cell cycle phase and ploidy level. Plant Science, 1994, 103, 81-91.	1.7	25
119	Community genetics in the time of nextâ€generation molecular technologies. Molecular Ecology, 2013, 22, 3198-3207.	2.0	25
120	Effect of kilning and milling on the dough-making properties ofÂoatÂflour. LWT - Food Science and Technology, 2015, 63, 960-965.	2.5	25
121	Role of ethylene in auxin-induced flower bud formation in tobacco explants. Physiologia Plantarum, 1990, 78, 167-172.	2.6	24
122	Ethylene Promotes Elongation Growth and Auxin Promotes Radial Growth in Ranunculus sceleratus Petioles. Plant Physiology, 1991, 96, 806-811.	2.3	24
123	Genomic regions in crop–wild hybrids of lettuce are affected differently in different environments: implications for crop breeding. Evolutionary Applications, 2012, 5, 629-640.	1.5	24
124	Natural variation in patterns of polysomaty among individual tomato plants and their regenerated progeny. Plant Science, 1995, 106, 129-139.	1.7	23
125	Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop–wild hybrids under drought, salinity and nutrient deficiency conditions. Theoretical and Applied Genetics, 2012, 125, 1097-1111.	1.8	23
126	Genomic and environmental selection patterns in two distinct lettuce crop–wild hybrid crosses. Evolutionary Applications, 2013, 6, 569-584.	1.5	23

#	Article	IF	CITATIONS
127	Optimisation of droplet digital PCR for determining copy number variation of α-gliadin genes in mutant and gene-edited polyploid bread wheat. Journal of Cereal Science, 2020, 92, 102903.	1.8	23
128	Role of ethylene in auxin-induced flower bud formation in tobacco explants. Physiologia Plantarum, 1990, 78, 167-172.	2.6	22
129	Microsatellite markers useful throughout the genus Dianthus. Genome, 2000, 43, 208-210.	0.9	22
130	Genetic engineering at the heart of agroecology. Outlook on Agriculture, 2020, 49, 21-28.	1.8	22
131	Expansion of the gamma-gliadin gene family in Aegilops and Triticum. BMC Evolutionary Biology, 2012, 12, 215.	3.2	21
132	Wrong place, wrong time: climate changeâ€induced range shift across fragmented habitat causes maladaptation and declined population size in a modelled bird species. Global Change Biology, 2012, 18, 2419-2428.	4.2	21
133	Genetic diversity and differentiation of the frankincense tree (Boswellia papyrifera (Del.) Hochst) across Ethiopia and implications for its conservation. Forest Ecology and Management, 2016, 360, 253-260.	1.4	21
134	Isolation and characterization of microsatellite loci in Geum urbanum (Rosaceae) and their transferability within the genus Geum. Molecular Ecology Notes, 2004, 4, 209-212.	1.7	20
135	Natural variation in avenin epitopes among oat varieties: Implications for celiac disease. Journal of Cereal Science, 2011, 54, 8-12.	1.8	20
136	Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC Plant Biology, 2012, 12, 43.	1.6	20
137	Genomic sequencing and microsatellite marker development for Boswellia papyrifera, an economically important but threatened tree native to dry tropical forests. AoB PLANTS, 2015, 7, .	1.2	20
138	Effects of the Developmental State of the Tissue on the Competence for Flower Bud Regeneration in Pedicel Explants of Tobacco. Plant Physiology, 1990, 92, 582-586.	2.3	18
139	Botanical DNA evidence in criminal cases: Knotgrass (Polygonum aviculare L.) as a model species. Forensic Science International: Genetics, 2012, 6, 366-374.	1.6	18
140	Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree. PLoS ONE, 2013, 8, e79925.	1.1	18
141	Spatial sorting and range shifts: Consequences for evolutionary potential and genetic signature of a dispersal trait. Journal of Theoretical Biology, 2015, 373, 92-99.	0.8	18
142	De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from Total DNA Sequences. Frontiers in Plant Science, 2017, 8, 1271.	1.7	18
143	Detecting quantitative trait loci and exploring chromosomal pairing in autopolyploids using polyqtlR. Bioinformatics, 2021, 37, 3822-3829.	1.8	18

144 Competence for Regeneration during Tobacco Internodal Development (Involvement of Plant Age, Cell) Tj ETQq0 0.0.rgBT /Oyerlock 10

#	Article	IF	CITATIONS
145	ANALYSIS OF A DATABASE OF DNA PROFILES OF 734 HYBRID TEA ROSE VARIETIES. Acta Horticulturae, 2009, , 169-175.	0.1	17
146	Rosa. , 2011, , 243-275.		17
147	Proteomic analysis of the major birch allergen Bet v 1 predicts allergenicity for 15 birch species. Journal of Proteomics, 2011, 74, 1290-1300.	1.2	17
148	The origin and early development of wheat glutenin particles. Journal of Cereal Science, 2008, 48, 870-877.	1.8	16
149	Patterns of habitat occupancy, genetic variation and predicted movement of a flightless bush cricket, Pholidoptera griseoaptera, in an agricultural mosaic landscape. Landscape Ecology, 2010, 25, 449-461.	1.9	16
150	Genetic Structure in Populations of an Ancient Woodland Sedge, Carex sylvatica Hudson, at a Regional and Local Scale. Plant Biology, 2005, 7, 387-396.	1.8	15
151	Clonal diversity and genetic differentiation of Maianthemum bifolium among forest fragments of different age. Plant Ecology, 2005, 179, 169-180.	0.7	15
152	Pollen-mediated gene flow in maize tested for coexistence of GM and non-GM crops in the Netherlands: effect of isolation distances between fields. Njas - Wageningen Journal of Life Sciences, 2009, 56, 405-423.	7.9	15
153	Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genomics, 2018, 19, 578.	1.2	15
154	Landscape genetics of fragmented forests: anticipating climate change by facilitating migration. IForest, 2009, 2, 128-132.	0.5	15
155	The dose of 1-naphthaleneacetic acid determines flower-bud regeneration in tobacco explants at a large range of concentrations. Planta, 1990, 180, 410-415.	1.6	14
156	Assignment Tests for Variety Identification Compared to Genetic Similarityâ€Based Methods Using Experimental Datasets from Different Marker Systems in Sugar Beet. Crop Science, 2007, 47, 1964-1974.	0.8	14
157	Development of a standard test for dough-making properties of oat cultivars. Journal of Cereal Science, 2014, 59, 56-61.	1.8	14
158	Diversity and food quality properties of farmers' varieties of sorghum from Bénin. Journal of the Science of Food and Agriculture, 2006, 86, 1032-1039.	1.7	13
159	Genetic diversity and genetic similarities between Iranian rose species. Journal of Horticultural Science and Biotechnology, 2010, 85, 231-237.	0.9	13
160	Microsatellite markers useful throughout the genus <i>Dianthus</i> . Genome, 2000, 43, 208-210.	0.9	13
161	Landscape prerequisites for the survival of a modelled metapopulation and its neutral genetic diversity are affected by climate change. Landscape Ecology, 2012, 27, 227-237.	1.9	11
162	TOWARDS THE ROSE GENOME SEQUENCE AND ITS USE IN RESEARCH AND BREEDING. Acta Horticulturae, 2015, , 167-175.	0.1	11

#	Article	IF	CITATIONS
163	Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars. Frontiers in Plant Science, 2014, 5, 567.	1.7	9
164	Genetically modified crops and sustainable agriculture: A proposed way forward in the societal debate. Njas - Wageningen Journal of Life Sciences, 2014, 70-71, 95-98.	7.9	9
165	IDENTIFICATION OF TOMATO CULTIVARS USING MICROSATELLITES. Acta Horticulturae, 1995, , 49-57.	0.1	8
166	Staining efficiency of specific proteins depends on the staining method: Wheat gluten proteins. Proteomics, 2008, 8, 1880-1884.	1.3	8
167	Mass spectrometry and pollen allergies. Expert Review of Proteomics, 2010, 7, 627-630.	1.3	8
168	HIGH THROUGHPUT MARKER DEVELOPMENT AND APPLICATION IN HORTICULTURAL CROPS. Acta Horticulturae, 2012, , 547-551.	0.1	8
169	Fine-scale spatial genetic structure in the frankincense tree Boswellia papyrifera (Del.) Hochst. and implications for conservation. Tree Genetics and Genomes, 2016, 12, 1.	0.6	8
170	Exploring the alphaâ€gliadin locus: the 33â€mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii. Plant Journal, 2021, 106, 86-94.	2.8	8
171	GENEROSE: GENETIC EVALUATION OF EUROPEAN ROSE RESOURCES FOR CONSERVATION AND HORTICULTURAL USE. Acta Horticulturae, 2005, , 119-124.	0.1	7
172	SNP GENOTYPING IN TETRAPLOID CUT ROSES. Acta Horticulturae, 2012, , 351-356.	0.1	7
173	DEVELOPMENT OF THE WAGRHSNP AXIOM SNP ARRAY BASED ON SEQUENCES FROM TETRAPLOID CUT ROSES AND GARDEN ROSES. Acta Horticulturae, 2015, , 177-184.	0.1	7
174	Inhibition by Ethylene of Auxin-Promotion of Flower Bud Formation in Tobacco Explants Is Absent in Plants Transformed by Agrobacterium rhizogenes. Plant Physiology, 1991, 96, 1131-1135.	2.3	6
175	Isolation and characterization of microsatellite loci in the dark bush cricket, Pholidoptera griseoaptera (Tettigoniidae). Molecular Ecology Notes, 2005, 5, 413-415.	1.7	6
176	How to Assure That Farmers Apply New Technology According to Good Agricultural Practice: Lessons From Dutch Initiatives. Frontiers in Environmental Science, 2018, 6, .	1.5	6
177	Detection of ploidy and chromosomal aberrations in commercial oil palm using high-throughput SNP markers. Planta, 2021, 253, 63.	1.6	6
178	Analysis of allelic variants of RhMLO genes in rose and functional studies on susceptibility to powdery mildew related to clade V homologs. Theoretical and Applied Genetics, 2021, 134, 2495-2515.	1.8	6
179	The Use of Intellectual Property Systems in Plant Breeding for Ensuring Deployment of Good Agricultural Practices. Agronomy, 2021, 11, 1163.	1.3	6
180	Advanced genebank management of genetic resources of European wild apple, Malus sylvestris, using genome-wide SNP array data. Tree Genetics and Genomes, 2021, 17, 1.	0.6	6

1

#	Article	IF	CITATIONS
181	Isolation and characterization of trinucleotide repeat microsatellite markers for Plutella xylostella L. Molecular Ecology Notes, 2006, 6, 1246-1248.	1.7	5
182	Development of microsatellite markers in <i>Gonystylus bancanus</i> (Ramin) useful for tracing and tracking of wood of this protected species. Molecular Ecology Resources, 2008, 8, 168-171.	2.2	5
183	IN SEARCH OF GENETIC DIVERSITY IN ROSA FOETIDA HERRMANN IN IRAN. Acta Horticulturae, 2009, , 25-30.	0.1	5
184	Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River. Genetic Resources and Crop Evolution, 2013, 60, 763-776.	0.8	5
185	New Developments in Molecular Techniques for Breeding in Ornamentals. Handbook of Plant Breeding, 2018, , 213-230.	0.1	5
186	Using probabilistic genotypes in linkage analysis of polyploids. Theoretical and Applied Genetics, 2021, 134, 2443-2457.	1.8	5
187	Statement of the Prolamin Working Group on the Determination of Gluten in Fermented Foods Containing Partially Hydrolyzed Gluten. Frontiers in Nutrition, 2020, 7, 626712.	1.6	5
188	THE DIVERSITY OF AUTOCHTHONOUS ROSES IN FLANDERS (BELGIUM) IN THE VIEW OF THE EUROPEAN GENEROSE REFERENCE FRAMEWORK. Acta Horticulturae, 2007, , 621-628.	0.1	4
189	Analysis of SSRs Uncovers Hierarchical Structure and Genetic Diversity in Chinese Soybean Landraces. Agricultural Sciences in China, 2010, 9, 1739-1748.	0.6	4
190	Isolation and characterization of six microsatellite loci in the larch budmoth Zeiraphera diniana (Lepidoptera: Tortricidae). European Journal of Entomology, 2010, 107, 267-269.	1.2	4
191	Dinucleotide repeat microsatellite markers for buck's-horn plantain (Plantago coronopus). Molecular Ecology Notes, 2002, 2, 524-526.	1.7	3
192	Beyond Coeliac Disease Toxicity. , 2008, , 139-147.		3
193	Autosomal and sexâ€ŀinked microsatellite loci in the green oak leaf roller <i>Tortrix viridana</i> L. (Lepidoptera, Tortricidae). Molecular Ecology Resources, 2009, 9, 809-811.	2.2	3
194	The dose of 1-naphthaleneacetic acid determines flower-bud regeneration in tobacco expiants at a large range of concentrations. Planta, 1990, 180, 410-5.	1.6	2
195	Isolation and characterization of highly polymorphic microsatellite markers in Hypochaeris radicata (Asteraceae). Molecular Ecology Notes, 2004, 4, 656-658.	1.7	2
196	Some thoughts on how to use markers in tetraploid rose breeding. Acta Horticulturae, 2019, , 1-6.	0.1	2
197	Gluten quantity and quality in wheat and in wheat-derived products. , 2021, , 97-129.		1

Low Gluten and Coeliac-Safe Wheat Through Gene Editing. , 2021, , 231-248.

#	Article	IF	CITATIONS
199	Using molecular markers in breeding: ornamentals catch up. Acta Horticulturae, 2020, , 49-54.	0.1	1
200	Gene-Edited â€~Gluten-Safe' Wheat, and Policy Issues Regarding New Plant Breeding Techniques. , 2019, , 61-74.		1
201	In Search of Hypoallergenic Birch Trees: Characterization of PR-10 Genes from Eight Betula Species and Detection of Bet v 1 Isoforms in Birch Pollen Using a Combined Genomics- Proteomics Approach. Advanced Topics in Science and Technology in China, 2012, , 335-346.	0.0	Ο
202	Acceptance of Natural and Genetically Modified Hypoallergenic Apples by Consumers with an Oral Allergy Syndrome (OAS). Advanced Topics in Science and Technology in China, 2012, , 401-408.	0.0	0