Micah S Ziegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486661/publications.pdf

Version: 2024-02-01

471509 395702 1,357 33 17 33 citations h-index g-index papers 34 34 34 1765 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization. Joule, 2019, 3, 2134-2153.	24.0	251
2	Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy and Environmental Science, 2021, 14, 1635-1651.	30.8	211
3	Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Journal of the American Chemical Society, 2015, 137, 12865-12872.	13.7	124
4	Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition. Journal of the American Chemical Society, 2017, 139, 5378-5386.	13.7	108
5	Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence ν-Aryl Dicopper(I,II) Complexes. Journal of the American Chemical Society, 2016, 138, 6484-6491.	13.7	54
6	Synthetic control and empirical prediction of redox potentials for Co ₄ O ₄ cubanes over a 1.4 V range: implications for catalyst design and evaluation of high-valent intermediates in water oxidation. Chemical Science, 2017, 8, 4274-4284.	7.4	50
7	Multifactorial Regulation of E-Cadherin Expression: An Integrative Study. Molecular Cancer Therapeutics, 2010, 9, 1-16.	4.1	49
8	Detailed DNA methylation profiles of the E-cadherin promoter in the NCI-60 cancer cells. Molecular Cancer Therapeutics, 2007, 6, 391-403.	4.1	48
9	Manganese–Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. Journal of the American Chemical Society, 2017, 139, 5579-5587.	13.7	47
10	Determinants of lithium-ion battery technology cost decline. Energy and Environmental Science, 2021, 14, 6074-6098.	30.8	46
11	A molecular structural analog of proposed dinuclear active sites in cobalt-based water oxidation catalysts. Chemical Communications, 2014, 50, 6326.	4.1	43
12	Stabilization of reactive Co ₄ O ₄ cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11630-11639.	7.1	41
13	Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Accounts of Chemical Research, 2020, 53, 1944-1956.	15.6	40
14	Zirconacyclopentadieneâ€Annulated Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 4839-4844.	13.8	31
15	Lewis acid–base interactions between platinum(<scp>ii</scp>) diaryl complexes and bis(perfluorophenyl)zinc: strongly accelerated reductive elimination induced by a Z-type ligand. Chemical Communications, 2016, 52, 7039-7042.	4.1	28
16	Monomeric, Divalent Vanadium Bis(arylamido) Complexes: Linkage Isomerism and Reactivity. Organometallics, 2019, 38, 1648-1663.	2.3	20
17	Dicopper Alkyl Complexes: Synthesis, Structure, and Unexpected Persistence. Organometallics, 2018, 37, 2807-2823.	2.3	19
18	Ring-opening and double-metallation reactions of the N-Heterocyclic carbene ligand in Cp â^— (IXy)Ru (IXy) Tj ET complex of ruthenium. Polyhedron, 2014, 84, 203-208.	Qq0 0 0 r 2.2	gBT /Overlock 17

complex of ruthenium. Polyhedron, 2014, 84, 203-208.

#	Article	IF	Citations
19	The Ruthenostannylene Complex [Cp*(IXy)H ₂ Ruâ€Snâ€Trip]: Providing Access to Unusual Ruâ€Sn Bonded Stannaâ€imine, Stannene, and Ketenylstannyl Complexes. Angewandte Chemie - International Edition, 2015, 54, 6622-6626.	13.8	16
20	Tricoordinate Organochromium(<scp>III</scp>) Complexes Supported by a Bulky Silylamido Ligand Produce Ultraâ€Highâ€Molecular Weight Polyethylene in the Absence of Activators. Helvetica Chimica Acta, 2016, 99, 859-867.	1.6	16
21	A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes. Angewandte Chemie - International Edition, 2020, 59, 12769-12773.	13.8	15
22	Evaluating and improving technologies for energy storage and backup power. Joule, 2021, 5, 1925-1927.	24.0	12
23	Synthesis, structures, and reactivity studies of cyclometalated N-heterocyclic carbene complexes of ruthenium. Dalton Transactions, 2018, 47, 12138-12146.	3.3	11
24	Isomerism and dynamic behavior of bridging phosphaalkynes bound to a dicopper complex. Chemical Science, 2020, 11, 1607-1616.	7.4	11
25	Functionalization of an iridium–diamidocarbene complex by ligand-based reactions with titanocene and zirconocene sources. Polyhedron, 2016, 116, 111-115.	2.2	9
26	Zirconacyclopentadieneâ€Annulated Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2017, 129, 4917-4922.	2.0	9
27	Linear, mixed-valent homocatenated tri-tin complexes featuring Sn–Sn bonds. Chemical Communications, 2020, 56, 6786-6789.	4.1	7
28	Titanium Imido Complexes by Displacement of –SiMe ₃ and C–H Bond Activation in a Ti ^{III} Amido Complex, Promoted by a Cyclic (Alkyl)(Amino) Carbene (cAAC). European Journal of Inorganic Chemistry, 2017, 2017, 2484-2487.	2.0	5
29	A Dicopper Nitrenoid by Oxidation of a CulCul Core: Synthesis, Electronic Structure, and Reactivity. Journal of the American Chemical Society, 2021, 143, 7135-7143.	13.7	5
30	Unsymmetrical Naphthyridine-Based Dicopper(I) Complexes: Synthesis, Stability, and Carbon–Hydrogen Bond Activations. Organometallics, 2021, 40, 1866-1873.	2.3	3
31	A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes. Angewandte Chemie, 2020, 132, 12869-12873.	2.0	2
32	Siloxyaluminate and Siloxygallate Complexes as Models for Framework and Partially Hydrolyzed Framework Sites in Zeolites and Zeotypes. Chemistry - A European Journal, 2021, 27, 307-315.	3.3	2
33	Low-valent iron and cobalt complexes supported by a rigid xanthene-based disilylamido ligand. Polyhedron, 2020, 180, 114420.	2.2	1