
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486449/publications.pdf Version: 2024-02-01

PALELUDWIC

#	Article	IF	CITATIONS
1	Water: From Clusters to the Bulk. Angewandte Chemie - International Edition, 2001, 40, 1808-1827.	7.2	1,134
2	Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 2011, 333, 1733-1736.	6.0	728
3	Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes. Journal of the American Chemical Society, 2016, 138, 8809-8814.	6.6	485
4	Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nature Medicine, 2012, 18, 1401-1406.	15.2	405
5	Strong, Localized, and Directional Hydrogen Bonds Fluidize Ionic Liquids. Angewandte Chemie - International Edition, 2008, 47, 8731-8734.	7.2	386
6	Molecular Dynamic Simulations of Ionic Liquids: A Reliable Description of Structure, Thermodynamics and Dynamics. ChemPhysChem, 2007, 8, 2464-2470.	1.0	355
7	Iron-Catalyzed Hydrogen Production from Formic Acid. Journal of the American Chemical Society, 2010, 132, 8924-8934.	6.6	326
8	Hydrogen Bonding in Protic Ionic Liquids: Reminiscent of Water. Angewandte Chemie - International Edition, 2009, 48, 3184-3186.	7.2	308
9	Ion-Pair Formation in the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(triflyl)imide as a Function of Temperature and Concentration. ChemPhysChem, 2006, 7, 1944-1949.	1.0	304
10	The Association of Water in Ionic Liquids: A Reliable Measure of Polarity. Angewandte Chemie - International Edition, 2006, 45, 3697-3702.	7.2	272
11	The influence of hydrogen bonding on the physical properties of ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 14064.	1.3	270
12	Spectroscopic Evidence for an Enhanced Anion–Cation Interaction from Hydrogen Bonding in Pure Imidazolium Ionic Liquids. Angewandte Chemie - International Edition, 2010, 49, 449-453.	7.2	250
13	Calixarenes in analytical and separation chemistry. Fresenius' Journal of Analytical Chemistry, 2000, 367, 103-128.	1.5	249
14	The Cation–Anion Interaction in Ionic Liquids Probed by Farâ€Infrared Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 3830-3834.	7.2	249
15	The potential role of hydrogen bonding in aprotic and protic ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 8790.	1.3	218
16	Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Physical Chemistry Chemical Physics, 2014, 16, 21903-21929.	1.3	204
17	Imidazolium Salt Ion Pairs in Solution. Chemistry - A European Journal, 2015, 21, 8324-8335.	1.7	158
18	A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angewandte Chemie - International Edition, 2017, 56, 559-562.	7.2	158

#	Article	IF	CITATIONS
19	Analyzing the interaction energies between cation and anion in ionic liquids: The subtle balance between Coulomb forces and hydrogen bonding. Journal of Molecular Liquids, 2014, 192, 94-102.	2.3	148
20	On the Validity of Stokes–Einstein and Stokes–Einstein–Debye Relations in Ionic Liquids and Ionic‣iquid Mixtures. ChemPhysChem, 2008, 9, 1851-1858.	1.0	142
21	Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water. Journal of Chemical Physics, 1995, 103, 6941-6950.	1.2	132
22	PI3KÎ ² Plays a Critical Role in Neutrophil Activation by Immune Complexes. Science Signaling, 2011, 4, ra23.	1.6	130
23	Do We Understand the Volatility of Ionic Liquids?. Angewandte Chemie - International Edition, 2007, 46, 6582-6584.	7.2	124
24	Ionic Liquids: Dissecting the Enthalpies of Vaporization. ChemPhysChem, 2008, 9, 549-555.	1.0	123
25	Base-free hydrogen generation from methanol using a bi-catalytic system. Chemical Communications, 2014, 50, 707-709.	2.2	122
26	Spectroscopic Evidence for Clusters of Likeâ€Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding. ChemPhysChem, 2016, 17, 458-462.	1.0	115
27	The Influence of Hydrogenâ€Bond Defects on the Properties of Ionic Liquids. Angewandte Chemie - International Edition, 2011, 50, 6661-6665.	7.2	114
28	The Structure of Liquid Methanol. ChemPhysChem, 2005, 6, 1369-1375.	1.0	111
29	Quantum Cluster Equilibrium Theory of Liquids:Â Temperature Dependence of Hydrogen Bonding in LiquidN-Methylacetamide Studied by IR Spectra. Journal of Physical Chemistry B, 1998, 102, 9312-9318.	1.2	110
30	<i>ortho</i> â€Metalation of Iron(0) Tribenzylphosphine Complexes: Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid. Angewandte Chemie - International Edition, 2010, 49, 8993-8996.	7.2	109
31	The Importance of Hydrogen Bonds for the Structure of Ionic Liquids: Singleâ€Crystal Xâ€ray Diffraction and Transmission and Attenuated Total Reflection Spectroscopy in the Terahertz Region. Angewandte Chemie - International Edition, 2010, 49, 10221-10224.	7.2	106
32	Photocatalytic Hydrogen Generation from Water with Iron Carbonyl Phosphine Complexes: Improved Water Reduction Catalysts and Mechanistic Insights. Chemistry - A European Journal, 2011, 17, 6425-6436.	1.7	105
33	Temperature Dependence of the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 12727-12735.	1.2	104
34	IR and NMR Properties of Ionic Liquids: Do They Tell Us the Same Thing?. ChemPhysChem, 2007, 8, 2265-2269.	1.0	103
35	Hydrogen bonding in ionic liquids probed by linear and nonlinear vibrational spectroscopy. New Journal of Physics, 2012, 14, 105026.	1.2	102
36	Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion. Scientific Reports, 2015, 5, 17505.	1.6	102

#	Article	IF	CITATIONS
37	Dissecting Anion–Cation Interaction Energies in Protic Ionic Liquids. Angewandte Chemie - International Edition, 2013, 52, 2368-2372.	7.2	100
38	Theoretical study of hydrogen bonding in liquid and gaseous N-methylformamide. Journal of Chemical Physics, 1997, 107, 499-507.	1.2	99
39	The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thrombosis and Haemostasis, 2006, 95, 535-540.	1.8	98
40	On the Tautomerism of Secondary Phosphane Oxides. European Journal of Organic Chemistry, 2010, 2010, 2733-2741.	1.2	98
41	Lowâ€Frequency Vibrational Modes of Protic Molten Salts and Ionic Liquids: Detecting and Quantifying Hydrogen Bonds. Angewandte Chemie - International Edition, 2012, 51, 6236-6240.	7.2	97
42	NMR relaxation studies in water-alcohol mixtures: the water-rich region. Chemical Physics, 1995, 195, 329-337.	0.9	93
43	Phosphides or nitrides for better NLO properties? A detailed comparative study of alkali metal doped nano-cages. Materials Research Bulletin, 2017, 92, 113-122.	2.7	92
44	Therapeutic Use of Heparin beyond Anticoagulation. Current Drug Discovery Technologies, 2009, 6, 281-289.	0.6	90
45	lon Speciation of Protic Ionic Liquids in Water: Transition from Contact to Solvent‣eparated Ion Pairs. Angewandte Chemie - International Edition, 2013, 52, 2990-2994.	7.2	89
46	Death and Rebirth: Photocatalytic Hydrogen Production by a Self-Organizing Copper–Iron System. ACS Catalysis, 2014, 4, 1845-1849.	5.5	89
47	Calculation of Clathrate-Like Water Clusters Including H2O-Buckminsterfullerene. Angewandte Chemie - International Edition, 2005, 44, 811-815.	7.2	87
48	Experimental and theoretical studies of hydrogen bonding in neat, liquid formamide. Journal of Chemical Physics, 1995, 102, 5118-5125.	1.2	85
49	The effect of hydrogen bonding on the thermodynamic and spectroscopic properties of molecular clusters and liquids. Physical Chemistry Chemical Physics, 2002, 4, 5481-5487.	1.3	83
50	Volatile Times for the Very First Ionic Liquid: Understanding the Vapor Pressures and Enthalpies of Vaporization of Ethylammonium Nitrate. Chemistry - A European Journal, 2014, 20, 11640-11645.	1.7	83
51	A Molecularly Defined Ironâ€Catalyst for the Selective Hydrogenation of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2013, 19, 7701-7707.	1.7	81
52	When Like Charged Ions Attract in Ionic Liquids: Controlling the Formation of Cationic Clusters by the Interaction Strength of the Counterions. Angewandte Chemie - International Edition, 2017, 56, 496-500.	7.2	81
53	Remarkable nonlinear optical response of alkali metal doped aluminum phosphide and boron phosphide nanoclusters. Journal of Molecular Liquids, 2018, 271, 51-64.	2.3	80
54	Selective Earth-Abundant System for CO ₂ Reduction: Comparing Photo- and Electrocatalytic Processes. ACS Catalysis, 2019, 9, 2091-2100.	5.5	80

#	Article	IF	CITATIONS
55	Pressure and Salt Effects in Simulated Water: Two Sides of the Same Coin?. Angewandte Chemie - International Edition, 2007, 46, 8907-8911.	7.2	79
56	Specific Ion Effects on Water Structure and Dynamics beyond the First Hydration Shell. Angewandte Chemie - International Edition, 2011, 50, 352-353.	7.2	78
57	Controlling the Subtle Energy Balance in Protic Ionic Liquids: Dispersion Forces Compete with Hydrogen Bonds. Angewandte Chemie - International Edition, 2015, 54, 2792-2795.	7.2	78
58	New Insight into the Transport Mechanism of Hydrated Hydroxide Ions in Water. Angewandte Chemie - International Edition, 2003, 42, 258-260.	7.2	77
59	Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite. Colloids and Surfaces B: Biointerfaces, 2017, 159, 366-374.	2.5	77
60	Comment on "New Interpretation of the CH Stretching Vibrations in Imidazolium-Based Ionic Liquids― Journal of Physical Chemistry A, 2010, 114, 685-686.	1.1	76
61	Copperâ€Based Photosensitisers in Water Reduction: A More Efficient In Situ Formed System and Improved Mechanistic Understanding. Chemistry - A European Journal, 2016, 22, 1233-1238.	1.7	76
62	Designing alkoxy-induced based high performance near infrared sensitive small molecule acceptors for organic solar cells. Journal of Molecular Liquids, 2020, 305, 112829.	2.3	76
63	Quantum cluster equilibrium theory of liquids: Freezing of QCE/3-21G water to tetrakaidecahedral "Bucky-ice― Journal of Chemical Physics, 1999, 110, 508-515.	1.2	75
64	Quantum cluster equilibrium theory of liquids: molecular clusters and thermodynamics of liquid ethanol. Molecular Physics, 1999, 97, 465-477.	0.8	75
65	Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2015, 17, 8431-8440.	1.3	74
66	Thermodynamic properties of ionic liquids—a cluster approach. Physical Chemistry Chemical Physics, 2008, 10, 4333.	1.3	73
67	Formation of Water Clusters in a Hydrophobic Solvent. Angewandte Chemie - International Edition, 2003, 42, 4904-4908.	7.2	71
68	Combined THz, FIR and Raman Spectroscopy Studies of Imidazoliumâ€Based Ionic Liquids Covering the Frequency Range 2–300 cm ^{â^'1} . ChemPhysChem, 2010, 11, 349-353.	1.0	71
69	Molecular reorientation in ionic liquids: A comparative dielectric and magnetic relaxation study. Chemical Physics Letters, 2007, 439, 323-326.	1.2	65
70	Structure of Liquid N-Methylacetamide:  Temperature Dependence of NMR Chemical Shifts and Quadrupole Coupling Constants. Journal of Physical Chemistry A, 1997, 101, 8861-8870.	1.1	64
71	Spectroscopic evidence of †jumping and pecking' of cholinium and H-bond enhanced cation–cation interaction in ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 30978-30982.	1.3	64
72	An Elemental Mercury Diffusion Coefficient for Natural Waters Determined by Molecular Dynamics Simulation. Environmental Science & Technology, 2009, 43, 3183-3186.	4.6	62

#	Article	IF	CITATIONS
73	Estimating Enthalpies of Vaporization of Imidazoliumâ€Based Ionic Liquids from Farâ€Infrared Measurements. ChemPhysChem, 2010, 11, 1623-1626.	1.0	61
74	Insights into the Mechanism of Photocatalytic Water Reduction by DFTâ€Supported In Situ EPR/Raman Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 10246-10250.	7.2	59
75	Equilibrium of Contact and Solventâ€Separated Ion Pairs in Mixtures of Protic Ionic Liquids and Molecular Solvents Controlled by Polarity. Angewandte Chemie - International Edition, 2013, 52, 12439-12442.	7.2	59
76	Iron-catalyzed photoreduction of carbon dioxide to synthesis gas. Catalysis Science and Technology, 2016, 6, 3623-3630.	2.1	58
77	Structure–Property Relationships in Ionic Liquids: A Study of the Anion Dependence in Vaporization Enthalpies of Imidazoliumâ€Based Ionic Liquids. ChemPhysChem, 2012, 13, 1868-1876.	1.0	56
78	Mechanistic Study on the Addition of CO ₂ to Epoxides Catalyzed by Ammonium and Phosphonium Salts: A Combined Spectroscopic and Kinetic Approach. ACS Sustainable Chemistry and Engineering, 2018, 6, 10778-10788.	3.2	56
79	Water: From Clusters to the Bulk. Angewandte Chemie - International Edition, 2001, 40, 1808-1827.	7.2	56
80	Cooperative hydrogen bonding in amides and peptides. Journal of Molecular Liquids, 2000, 84, 65-75.	2.3	55
81	The Anion Dependence of the Interaction Strength between Ions in Imidazolium-Based Ionic Liquids Probed by Far-Infrared Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 9507-9511.	1.2	54
82	Baseâ€Free Nonâ€Nobleâ€Metalâ€Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights. Chemistry - A European Journal, 2014, 20, 13589-13602.	1.7	53
83	Highly active and selective photochemical reduction of CO ₂ to CO using molecular-defined cyclopentadienone iron complexes. Chemical Communications, 2016, 52, 8393-8396.	2.2	53
84	Temperature dependence of hydrogen bonding in alcohols. Journal of Molecular Liquids, 2000, 85, 105-125.	2.3	52
85	Exploring Between the Extremes: Conversionâ€Dependent Kinetics of Phosphiteâ€Modified Hydroformylation Catalysis. Chemistry - A European Journal, 2012, 18, 8780-8794.	1.7	52
86	What Farâ€Infrared Spectra Can Contribute to the Development of Force Fields for Ionic Liquids Used in Molecular Dynamics Simulations. ChemPhysChem, 2009, 10, 1181-1186.	1.0	51
87	Microheterogeneities in Ionicâ€Liquid–Methanol Solutions Studied by FTIR Spectroscopy, DFT Calculations and Molecular Dynamics Simulations. ChemPhysChem, 2012, 13, 1708-1717.	1.0	51
88	Spectroscopic Evidence for an Attractive Cation–Cation Interaction in Hydroxyâ€Functionalized Ionic Liquids: A Hydrogenâ€Bonded Chainâ€like Trimer. Angewandte Chemie - International Edition, 2018, 57, 15364-15368.	7.2	51
89	Cationic clustering influences the phase behaviour of ionic liquids. Scientific Reports, 2018, 8, 14753.	1.6	51
90	Nonâ€Ideal Mixing Behaviour of Hydrogen Bonding in Mixtures of Protic Ionic Liquids. ChemPhysChem, 2015, 16, 299-304.	1.0	50

#	Article	IF	CITATIONS
91	Dispersion and Hydrogen Bonding Rule: Why the Vaporization Enthalpies of Aprotic Ionic Liquids Are Significantly Larger than those of Protic Ionic liquids. Angewandte Chemie - International Edition, 2016, 55, 11682-11686.	7.2	50
92	NMR relaxation in ethanol and propanol and in their binary mixtures with carbon tetrachloride. Molecular Physics, 1994, 82, 313-323.	0.8	49
93	Temperature dependence of hydrogen bonding in neat, liquid formamide. Journal of Chemical Physics, 1995, 103, 3636-3642.	1.2	49
94	A Comparative Inâ€Situ HPâ€FTIR Spectroscopic Study of Bi―and Monodentate Phosphiteâ€Modified Hydroformylation. ChemCatChem, 2010, 2, 287-295.	1.8	48
95	Molecular Dynamics in Lower Alcohols. Zeitschrift Fur Physikalische Chemie, 1995, 189, 19-27.	1.4	47
96	A Simple Geometrical Explanation for the Occurrence of Specific Large Aggregated Ions in Some Protic Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 15419-15422.	1.2	47
97	Structural Motifs in Cold Ternary Ion Complexes of Hydroxyl-Functionalized Ionic Liquids: Isolating the Role of Cation–Cation Interactions. Journal of Physical Chemistry Letters, 2018, 9, 2979-2984.	2.1	47
98	Molecular Reorientation in Liquid Methanol. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1991, 46, 89-94.	0.7	46
99	Structure and Dynamics of Water Confined in Dimethyl Sulfoxide. ChemPhysChem, 2006, 7, 266-272.	1.0	46
100	The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 13790-13793.	1.3	46
101	tert-Butylphosphonic Acid: From the Bulk to the Gas Phase. Chemistry - A European Journal, 2003, 9, 837-849.	1.7	45
102	Hexamers: From Covalently Bound Organic Structures to Hydrogen Bonded Water Clusters. ChemPhysChem, 2000, 1, 53-56.	1.0	44
103	Management of cutaneous type IV hypersensitivity reactions induced by heparin. Thrombosis and Haemostasis, 2006, 96, 611-617.	1.8	44
104	Transport properties of graphene quantum dots in glycerol and distilled water. Journal of Molecular Liquids, 2017, 241, 831-838.	2.3	44
105	Temperature Dependence of the Deuteron and Oxygen Quadrupole Coupling Constants of Water in the System Water/Dimethyl Sulfoxide. The Journal of Physical Chemistry, 1994, 98, 6684-6687.	2.9	43
106	Quantum cluster equilibrium theory of liquids: temperature dependent chemical shifts, quadrupole coupling constants and vibrational frequencies in liquid ethanol. Molecular Physics, 1999, 97, 479-486.	0.8	43
107	Revisiting imidazolium based ionic liquids: Effect of the conformation bias of the [NTf2] anion studied by molecular dynamics simulations. Journal of Chemical Physics, 2018, 148, 193828.	1.2	42
108	Collective contributions to the dielectric relaxation of hydrogen-bonded liquids. Journal of Chemical Physics, 2004, 120, 11692-11697.	1.2	41

#	Article	IF	CITATIONS
109	Hydrogen Bonding Between Ions of Like Charge in Ionic Liquids Characterized by NMR Deuteron Quadrupole Coupling Constants—Comparison with Salt Bridges and Molecular Systems. Angewandte Chemie - International Edition, 2019, 58, 17863-17871.	7.2	41
110	In Spite of the Chemist's Belief: Carbonic Acid Is Surprisingly Stable. Angewandte Chemie - International Edition, 2000, 39, 1421-1423.	7.2	40
111	Raman spectroscopic investigation of small matrix-isolated lithium clusters. Journal of Chemical Physics, 2003, 118, 6957-6963.	1.2	40
112	Ion Pairing in Protic Ionic Liquids Probed by Farâ€Infrared Spectroscopy: Effects of Solvent Polarity and Temperature. ChemPhysChem, 2014, 15, 2604-2609.	1.0	40
113	Predicting the Ionic Product of Water. Scientific Reports, 2017, 7, 10244.	1.6	40
114	The Doubleâ€Faced Nature of Hydrogen Bonding in Hydroxyâ€Functionalized Ionic Liquids Shown by Neutron Diffraction and Molecular Dynamics Simulations. Angewandte Chemie - International Edition, 2019, 58, 12887-12892.	7.2	40
115	The Importance of Tetrahedrally Coordinated Molecules for the Explanation of Liquid Water Properties. ChemPhysChem, 2007, 8, 938-943.	1.0	39
116	Hydrogen bonding in a sterically hindered alcohol. Journal of Molecular Liquids, 2002, 98-99, 163-171.	2.3	38
117	How Does Water Bind to Metal Surfaces: Hydrogen Atoms Up or Hydrogen Atoms Down?. Angewandte Chemie - International Edition, 2003, 42, 3458-3460.	7.2	38
118	A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angewandte Chemie, 2017, 129, 574-577.	1.6	37
119	Improving antibacterial activity of phosphomolybdic acid using graphene. Materials Chemistry and Physics, 2017, 188, 58-67.	2.0	37
120	Synthesis of .alpha.,.alpha.,.beta.,.betaTetrasubstituted .betaLactones from Ketones, Ethyl .alphaBromoisobutyrate, and Indium or Zinc. Factors Influencing the .betaLactone Formation in the Electrochemical and the Classical Procedure of the Reformatsky Reaction. Journal of Organic Chemistry, 1994, 59, 3161-3164.	1.7	36
121	Characterization of Doubly Ionic Hydrogen Bonds in Protic Ionic Liquids by NMR Deuteron Quadrupole Coupling Constants: Differences to Hâ€bonds in Amides, Peptides, and Proteins. Angewandte Chemie - International Edition, 2017, 56, 14310-14314.	7.2	35
122	Hydronium Ion Complex of 18-Crown-6: Theory Confirms Three "Normal―Linear Hydrogen Bonds. Journal of Physical Chemistry A, 2004, 108, 11463-11468.	1.1	34
123	Limiting diffusion coefficients of ionic liquids in water and methanol: a combined experimental and molecular dynamics study. Physical Chemistry Chemical Physics, 2011, 13, 3268.	1.3	34
124	Comparison of Force Fields on the Basis of Various Model Approaches—How To Design the Best Model for the [C _{<i>n</i>} MIM][NTf ₂] Family of Ionic Liquids. ChemPhysChem, 2013, 14, 3368-3374.	1.0	34
125	Site Selective Synthesis of Pentaarylpyridines <i>via</i> Multiple Suzuki–Miyaura Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2014, 356, 1987-2008.	2.1	34
126	Novel acridine-based thiosemicarbazones as â€~turn-on' chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study. Royal Society Open Science, 2018, 5, 180646.	1.1	34

#	Article	IF	CITATIONS
127	First row transition metals decorated boron phosphide nanoclusters as nonlinear optical materials with high thermodynamic stability and enhanced electronic properties; A detailed quantum chemical study. Optics and Laser Technology, 2021, 134, 106570.	2.2	34
128	Quantum cluster equilibrium theory of liquids part I: Molecular clusters and thermodynamics of liquid ammonia. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 197-204.	0.9	33
129	From Intramolecularly [4 + 1]- and [4 + 2]-Coordinated Tri- and Tetraorganosilanes to Hypercoordinated Benzoxasilaphospholesâ€. Organometallics, 2001, 20, 4654-4663.	1.1	33
130	Modelâ€free multivariate curve resolution combined with modelâ€based kinetics: algorithm and applications. Journal of Chemometrics, 2012, 26, 538-548.	0.7	33
131	Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes. Inorganics, 2017, 5, 14.	1.2	33
132	Effective Oâ€17 quadrupole moments for the calibrated computation of quadrupole coupling parameters at different levels of theory. Journal of Chemical Physics, 1996, 105, 8223-8230.	1.2	32
133	Isotopic Quantum Effects in Liquid Methanol. ChemPhysChem, 2005, 6, 1376-1380.	1.0	32
134	Small Magnesium Clusters: Between van der Waals and Valence Bonds. Inorganic Chemistry, 2010, 49, 3851-3856.	1.9	31
135	An Operando FTIR Spectroscopic and Kinetic Study of Carbon Monoxide Pressure Influence on Rhodiumâ€Catalyzed Olefin Hydroformylation. Chemistry - A European Journal, 2014, 20, 11921-11931.	1.7	31
136	Preparation and Crystal Structure of Tetraphenylphosphonium Triiodotetrabromide [PPh4][I3Br4]. Inorganic Chemistry, 2001, 40, 25-28.	1.9	30
137	Investigation into the Equilibrium of Iridium Catalysts for the Hydroformylation of Olefins by Combining In Situ High-Pressure FTIR and NMR Spectroscopy. ACS Catalysis, 2014, 4, 2097-2108.	5.5	30
138	Quantum cluster equilibrium theory of liquids part II: Temperature dependent chemical shifts, quadrupole coupling constants and vibrational frequencies in liquid ammonia. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 205-212.	0.9	29
139	Correlations between structural, NMR and IR spectroscopic properties ofN-methylacetamide. Magnetic Resonance in Chemistry, 2001, 39, S127-S134.	1.1	29
140	The Effect of Neutral Ion Aggregate Formation on the Electrical Conductivity of an Ionic Liquid and its Mixtures with Chloroform. ChemPhysChem, 2012, 13, 1748-1752.	1.0	29
141	A simple guiding principle for the temperature dependence of the solubility of light gases in imidazolium-based ionic liquids derived from molecular simulations. Physical Chemistry Chemical Physics, 2017, 19, 1770-1780.	1.3	29
142	Controlling the kinetic and thermodynamic stability of cationic clusters by the addition of molecules or counterions. Physical Chemistry Chemical Physics, 2017, 19, 18854-18862.	1.3	29
143	Likeâ€likesâ€Like: Cooperative Hydrogen Bonding Overcomes Coulomb Repulsion in Cationic Clusters with Net Charges up to Q =+6 e. ChemPhysChem, 2018, 19, 1691-1695.	1.0	29
144	Cooperatively enhanced hydrogen bonds in ionic liquids: closing the loop with molecular mimics of hydroxy-functionalized cations. Physical Chemistry Chemical Physics, 2019, 21, 18092-18098.	1.3	29

#	Article	IF	CITATIONS
145	When hydrogen bonding overcomes Coulomb repulsion: from kinetic to thermodynamic stability of cationic dimers. Physical Chemistry Chemical Physics, 2019, 21, 8215-8220.	1.3	29
146	Controlling "like–likes–like―charge attraction in hydroxy-functionalized ionic liquids by polarizability of the cations, interaction strength of the anions and varying alkyl chain length. Physical Chemistry Chemical Physics, 2020, 22, 2763-2774.	1.3	29
147	N-Methylacetamide/water clusters in a hydrophobic solvent. Physical Chemistry Chemical Physics, 2004, 6, 1867-1873.	1.3	28
148	Water Vibrational Bands as a Polarity Indicator in Ionic Liquids. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1361-1376.	1.4	28
149	Secondary Phosphane Oxides as Preligands in Rhodiumâ€Catalyzed Hydroformylation. ChemCatChem, 2010, 2, 1278-1285.	1.8	28
150	Computational investigation of a covalent triazine framework (CTF-0) as an efficient electrochemical sensor. RSC Advances, 2022, 12, 3909-3923.	1.7	28
151	Synthesis of substituted β-lactones by a Reformatsky reaction of carbonyl compounds, phenyl α-bromoalkanoates, and indium. Tetrahedron, 1995, 51, 2939-2946.	1.0	27
152	Complex Formation of Isocytosine Tautomers with Pdlland Ptll. Inorganic Chemistry, 2004, 43, 3386-3393.	1.9	27
153	Hydroxy-Substituted Oligosilane Dendrimers: Controlling the Electronic Properties through Hydrogen Bonding. Angewandte Chemie - International Edition, 2006, 45, 6755-6759.	7.2	27
154	Small Potassium Clusters. Angewandte Chemie - International Edition, 1998, 37, 1575-1577.	7.2	26
155	Quantum cluster equilibrium theory of liquids: light and heavy QCE/3-21G model water. Physical Chemistry Chemical Physics, 2000, 2, 1613-1619.	1.3	26
156	Molecular Composition of Liquid Sulfur. Angewandte Chemie - International Edition, 2002, 41, 3199-3202.	7.2	26
157	1â€(Arylalkenyl)pyrenes – Synthetic, Structural, Photophysical, Theoretical, and Electrochemical Investigations. European Journal of Organic Chemistry, 2011, 2011, 5261-5271.	1.2	26
158	The Dissolution of Polyols in Salt Solutions and Ionic Liquids at Molecular Level: Ions, Counter Ions, and Hofmeister Effects. ChemPhysChem, 2013, 14, 3667-3671.	1.0	26
159	The influence of like-charge attraction on the structure and dynamics of ionic liquids: NMR chemical shifts, quadrupole coupling constants, rotational correlation times and failure of Stokes–Einstein–Debye. Physical Chemistry Chemical Physics, 2018, 20, 5617-5625.	1.3	26
160	Salt Effects on the Structure of Water Probed by Attenuated Total Reflection Infrared Spectroscopy and Molecular Dynamics Simulations. ChemPhysChem, 2008, 9, 2731-2736.	1.0	25
161	Isolation, spectroscopic and density functional theory studies of 7-(4-methoxyphenyl)-9H-furo[2,3-f]chromen-9-one: A new flavonoid from the bark of Millettia ovalifolia. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 146, 24-32.	2.0	24
162	Spectroscopic and density functional theory studies of 7-hydroxy-3′-methoxyisoflavone: A new isoflavone from the seeds of Indigofera heterantha (Wall). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 148, 375-381.	2.0	24

#	Article	IF	CITATIONS
163	Deuteron quadrupole coupling constants and reorientational correlation times in protic ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 17788-17794.	1.3	24
164	Electrochemically supported Reformatskii reaction: a convenient preparation of 2-substituted 1-ethyl 3-oxoalkanedioates. Journal of Organic Chemistry, 1992, 57, 4013-4015.	1.7	23
165	Mechanistic Insights into the Electrochemical Reduction of CO ₂ Catalyzed by Iron Cyclopentadienone Complexes. Organometallics, 2019, 38, 1236-1247.	1.1	23
166	Investigation of an H-bonded dimer: Calculations of bonding structures and temperature dependence of the librational substructure of the OH-stretching band. Journal of Chemical Physics, 1999, 111, 5897-5904.	1.2	22
167	Applying the Inductive Effect for Synthesizing Lowâ€Melting and Lowâ€Viscosity Imidazoliumâ€Based Ionic Liquids. ChemPhysChem, 2009, 10, 516-519.	1.0	22
168	Understanding the Dissolution of Polyols by Ionic Liquids Using the Example of a Wellâ€Đefined Model Compound. ChemPhysChem, 2011, 12, 2400-2404.	1.0	22
169	Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation. Journal of Chemical Physics, 2018, 148, 193843.	1.2	22
170	Nuclear magnetic resonance relaxation, permittivity, viscosity and ultrasonic velocity measurements in binary mixtures of methanol and tetrahydrofuran. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3955.	1.7	21
171	Quantum Cluster Equilibrium Theory of Liquids: Isotopically substituted QCE/3-21G Model Water. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	1.4	21
172	The Puzzling Properties of Supercooled and Glassy Water. Angewandte Chemie - International Edition, 2006, 45, 3402-3405.	7.2	21
173	Anziehung gleich geladener Ionen in ionischen Flüssigkeiten: Kontrolle der Bildung kationischer Cluster über die Wechselwirkungsstäke der Gegenionen. Angewandte Chemie, 2017, 129, 510-514.	1.6	21
174	Dynamical heterogeneities in ionic liquids as revealed from deuteron NMR. Chemical Communications, 2018, 54, 3098-3101.	2.2	21
175	Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 034002.	0.6	21
176	Acridinedione as selective flouride ion chemosensor: a detailed spectroscopic and quantum mechanical investigation. RSC Advances, 2018, 8, 1993-2003.	1.7	21
177	Understanding the Nature of Nuclear Magnetic Resonance Relaxation by Means of Fast-Field-Cycling Relaxometry and Molecular Dynamics Simulations—The Validity of Relaxation Models. Journal of Physical Chemistry Letters, 2020, 11, 2165-2170.	2.1	21
178	The Mechanism of the Molecular Reorientation in Water. ChemPhysChem, 2007, 8, 44-46.	1.0	20
179	Receptorâ€Spacerâ€Fluorophore Based Coumarinâ€Thiosemicarbazones as Anion Chemosensors with "Turn on―Response: Spectroscopic and Computational (DFT) Studies. ChemistrySelect, 2018, 3, 7633-7642.	0.7	20
180	Influence of Hydrogen Bonding between Ions of Like Charge on the Ionic Liquid Interfacial Structure at a Mica Surface. Journal of Physical Chemistry Letters, 2019, 10, 7368-7373.	2.1	20

#	Article	IF	CITATIONS
181	Trifluorosulfite Anion, SOF3 Inorganic Chemistry, 1999, 38, 3066-3069.	1.9	19
182	Formation of the Magic Cluster Na8in Noble Gas Matrixesâ€. Inorganic Chemistry, 2002, 41, 6206-6210.	1.9	19
183	Wasser: Anomalien und RÜel. Chemie in Unserer Zeit, 2005, 39, 164-175.	0.1	19
184	Solvophobic Solvation and Interaction of Small Apolar Particles in Imidazolium-Based Ionic Liquids. Physical Review Letters, 2008, 100, 115901.	2.9	19
185	Formation of "Quasi―Contact or Solventâ€separated Ion Pairs in the Local Environment of Probe Molecules Dissolved in Ionic Liquids. ChemPhysChem, 2014, 15, 265-270.	1.0	19
186	Dissecting the Vaporization Enthalpies of Ionic Liquids by Exclusively Experimental Methods: Coulomb Interaction, Hydrogen Bonding, and Dispersion Forces. Angewandte Chemie - International Edition, 2019, 58, 8589-8592.	7.2	19
187	Dynamics of Methanol in Ionic Liquids: Validity of the Stokes–Einstein and Stokes–Einstein–Debye Relations. ChemPhysChem, 2014, 15, 3040-3048.	1.0	18
188	Effect of Hydrogen Bonding between Ions of Like Charge on the Boundary Layer Friction of Hydroxy-Functionalized Ionic Liquids. Journal of Physical Chemistry Letters, 2020, 11, 3905-3910.	2.1	18
189	Nonlinear optical response of first-row transition metal doped Al12P12 nanoclusters; a first-principles study. Journal of Physics and Chemistry of Solids, 2021, 151, 109914.	1.9	18
190	Novel Synthesis of Tetrasubstituted ?-Lactones: The Use of Indium in the Electrochemically Supported Reformatsky Reaction. Angewandte Chemie International Edition in English, 1993, 32, 1191-1193.	4.4	17
191	Vibrational Spectra and Structural Aspects of Fluorosulfites. Inorganic Chemistry, 1997, 36, 5570-5573.	1.9	17
192	Raman Spectroscopic Investigation of Matrix Isolated Rubidium and Cesium Molecules:Â Rb2, Rb3, Cs2, and Cs3â€,1. Inorganic Chemistry, 1999, 38, 4696-4699.	1.9	17
193	Counting cations involved in cationic clusters of hydroxy-functionalized ionic liquids by means of infrared and solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 6861-6867.	1.3	17
194	The Anisotropy of the Molecular Reorientational Motions in Liquid Methanol. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1995, 50, 211-216.	0.7	16
195	The Influence of Water on the Solubility of Carbon Dioxide in Imidazolium Based Ionic Liquids. Zeitschrift Fur Physikalische Chemie, 2013, 227, 167-176.	1.4	16
196	Mechanistic Study of Photocatalytic Hydrogen Generation with Simple Iron Carbonyls as Water Reduction Catalysts. ChemCatChem, 2016, 8, 404-411.	1.8	16
197	NMR relaxation in binary aqueous mixtures of acetone and tetrahydrofurane. Journal of Molecular Liquids, 1992, 54, i.	2.3	15
198	Protonated Water Clusters: The Third Dimension. ChemPhysChem, 2004, 5, 1495-1497.	1.0	15

#	Article	IF	CITATIONS
199	In Situ FTIR and NMR Spectroscopic Investigations on Rutheniumâ€Based Catalysts for Alkene Hydroformylation. Chemistry - A European Journal, 2016, 22, 2746-2757.	1.7	15
200	Rotational correlation times, diffusion coefficients and quadrupolar peaks of the protic ionic liquid ethylammonium nitrate by means of 1H fast field cycling NMR relaxometry. Journal of Molecular Liquids, 2021, 322, 114983.	2.3	15
201	Quasi-Universal Solubility Behavior of Light Gases in Imidazolium-Based Ionic Liquids with Varying Anions: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2021, 125, 1647-1659.	1.2	15
202	Kinetics of Hydrogen Bonding between lons with Opposite and Like Charges in Hydroxyl-Functionalized Ionic Liquids. Journal of Physical Chemistry B, 2021, 125, 281-286.	1.2	15
203	Correlation Times and Quadrupole Coupling Constants in Neat, Liquid Formamide. The Journal of Physical Chemistry, 1995, 99, 9681-9686.	2.9	14
204	Tetramethylammonium Difluorobromate(I), (CH3)4N+BrF2 Inorganic Chemistry, 1997, 36, 4280-4283.	1.9	14
205	Synthesis and Characterization of Tetramethylammonium Cyanosulfite, (CH3)4N+SO2CN Journal of the American Chemical Society, 1999, 121, 4019-4022.	6.6	14
206	Temperature and Concentration Effects on the Solvophobic Solvation of Methane in Aqueous Salt Solutions. ChemPhysChem, 2008, 9, 2722-2730.	1.0	14
207	Isolating the role of hydrogen bonding in hydroxyl-functionalized ionic liquids by means of vaporization enthalpies, infrared spectroscopy and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 20308-20314.	1.3	14
208	Inorganic electrides of alkali metal doped Zn12O12 nanocage with excellent nonlinear optical response. Journal of Molecular Graphics and Modelling, 2021, 106, 107935.	1.3	14
209	Crystal Structure of IO2F. Inorganic Chemistry, 2001, 40, 6493-6495.	1.9	13
210	Twisted oxygen-containing oligosilanes—unprecedented examples of σ–n mixed conjugated systems. Chemical Communications, 2007, , 1810-1812.	2.2	13
211	Editorial: Ionic Liquids: The Fundamentals and Forces Driving Their Rise. ChemPhysChem, 2012, 13, 1603-1603.	1.0	13
212	Ionic Liquids Can Be More Hydrophobic than Chloroform or Benzene. ChemPhysChem, 2012, 13, 3102-3105.	1.0	13
213	Vibrational Dephasing in Ionic Liquids as a Signature of Hydrogen Bonding. ChemPhysChem, 2015, 16, 2519-2523.	1.0	13
214	Steuerung der subtilen Energiebalance in protischen ionischen Flüssigkeiten: DispersionskrÃŧte im Wettstreit mit Wasserstoffbrücken. Angewandte Chemie, 2015, 127, 2834-2837.	1.6	13
215	Gas hydrates model for the mechanistic investigation of the Wittig reaction "on water― RSC Advances, 2016, 6, 23448-23458.	1.7	13
216	The Effect of Additives on the Viscosity and Dissolution of Cellulose in Tetrabutylphosphonium Hydroxide. ChemSusChem, 2019, 12, 3458-3462.	3.6	13

#	Article	IF	CITATIONS
217	Dissecting intermolecular interactions in the condensed phase of ibuprofen and related compounds: the specific role and quantification of hydrogen bonding and dispersion forces. Physical Chemistry Chemical Physics, 2020, 22, 4896-4904.	1.3	13
218	Chain Length Dependence of Hydrogen Bond Linkages between Cationic Constituents in Hydroxy-Functionalized Ionic Liquids: Tracking Bulk Behavior to the Molecular Level with Cold Cluster Ion Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 683-688.	2.1	13
219	Quantification and understanding of non-covalent interactions in molecular and ionic systems: Dispersion interactions and hydrogen bonding analysed by thermodynamic methods. Journal of Molecular Liquids, 2021, 343, 117547.	2.3	13
220	Synthesis and Characterization of Novel Iodine(III) Compounds; Crystal Structures of Methoxy(trifluoromethyl)iodine(III) Chloride [CF3I(Cl)OCH3] and Dimethoxy(trifluoromethyl)iodine(III) [CF3I(OCH3)2]. European Journal of Inorganic Chemistry, 2000, 2000, 2387-2392.	1.0	12
221	Novel quinoxaline based chemosensors with selective dual mode of action: nucleophilic addition and host–guest type complex formation. RSC Advances, 2016, 6, 64009-64018.	1.7	12
222	The Relation between Vaporization Enthalpies and Viscosities: Eyring's Theory Applied to Selected Ionic Liquids. ChemPhysChem, 2017, 18, 1242-1246.	1.0	12
223	Probing relaxation models by means of Fast Field-Cycling relaxometry, NMR spectroscopy and molecular dynamics simulations: Detailed insight into the translational and rotational dynamics of a protic ionic liquid. Journal of Molecular Liquids, 2020, 319, 114207.	2.3	12
224	Clusters of Hydroxyl-Functionalized Cations Stabilized by Cooperative Hydrogen Bonds: The Role of Polarizability and Alkyl Chain Length. Molecules, 2020, 25, 4972.	1.7	12
225	Insights into the translational and rotational dynamics of cations and anions in protic ionic liquids by means of NMR fast-field-cycling relaxometry. Physical Chemistry Chemical Physics, 2021, 23, 2663-2675.	1.3	12
226	Siteâ€Selective Sonogashira Reactions of 1,4â€Dibromoâ€2â€fluorobenzene – Synthesis and Properties of Fluorinated Alkynylbenzenes. European Journal of Organic Chemistry, 2012, 2012, 604-615.	1.2	11
227	Advancing into Water's "No Man's Land†Two Liquid States?. Angewandte Chemie - International Edition, 2014, 53, 11699-11701.	7.2	11
228	Theoretical mechanistic investigation of zinc(ii) catalyzed oxidation of alcohols to aldehydes and esters. RSC Advances, 2016, 6, 31876-31883.	1.7	11
229	Large Stokes Shift Ionicâ€Liquid Dye. Angewandte Chemie - International Edition, 2017, 56, 8564-8567.	7.2	11
230	Diferrate [Fe ₂ (CO) ₆ (μ O){μâ€P(aryl) ₂ }] ^{â~`} as Selfâ€Assembling Iron/Phosphorâ€Based Catalyst for the Hydrogen Evolution Reaction in Photocatalytic Proton Reduction—Spectroscopic Insights. Chemistry - A European Journal, 2018, 24, 16052-16065.	1.7	11
231	Determination of the dispersion forces in the gas phase structures of ionic liquids using exclusively thermodynamic methods. Physical Chemistry Chemical Physics, 2021, 23, 7398-7406.	1.3	11
232	Hydrogen Bonds between Ions of Opposite and Like Charge in Hydroxyl-Functionalized Ionic Liquids: an Exhaustive Examination of the Interplay between Global and Local Motions and Intermolecular Hydrogen Bond Lifetimes and Kinetics. Journal of Physical Chemistry B, 2021, 125, 5132-5144.	1.2	11
233	Application of enolates of activated carboxylic acid derivatives in organic synthesisnovel syntheses of β-lactones. Pure and Applied Chemistry, 1997, 69, 605-608.	0.9	10
234	Syntheses, Dynamic Stereochemistry, and Unusual Reactivity of Intramolecularly Coordinated Organotin Fluorides. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 150, 305-310.	0.8	10

#	Article	IF	CITATIONS
235	Efficient Synthesis of Arylated Flavones by Siteâ€Selective Suzuki–Miyaura Crossâ€Coupling Reactions of the Bis(triflate) of 5,7―and 7,8â€Dihydroxyflavone. European Journal of Organic Chemistry, 2012, 2012, 1639-1652.	1.2	10
236	Dispersion und Wasserstoffbrücken bestimmend – Warum die Verdampfungsenthalpien von aprotischen größer als die von protischen ionischen Flüssigkeiten sind. Angewandte Chemie, 2016, 128, 11856-11860.	1.6	10
237	Utilization of the dye N-methyl-6-oxyquinolone as an optical acidometer in molecular solvents and protic ionic liquids. Chemical Communications, 2017, 53, 10761-10764.	2.2	10
238	Synthesis, X-ray crystal structure and spin polarized DFT study of high spin Mn based metal-organic framework. Journal of Molecular Structure, 2019, 1175, 439-444.	1.8	10
239	Freezing the Motion in Hydroxy-Functionalized Ionic Liquids–Temperature Dependent NMR Deuteron Quadrupole Coupling Constants for Two Types of Hydrogen Bonds Far below the Glass Transition. Journal of Physical Chemistry Letters, 2020, 11, 6000-6006.	2.1	10
240	Non-covalent interactions in molecular systems: thermodynamic evaluation of the hydrogen bond strength in aminoalcohols. Physical Chemistry Chemical Physics, 2021, 23, 25226-25238.	1.3	10
241	Trifluoromethyl Hypobromite, CF3OBr. Inorganic Chemistry, 1997, 36, 2147-2150.	1.9	9
242	Inside Cover: Estimating Enthalpies of Vaporization of Imidazolium-Based Ionic Liquids from Far-Infrared Measurements (ChemPhysChem 8/2010). ChemPhysChem, 2010, 11, 1586-1586.	1.0	9
243	Synthesis and Characterization of Tetramethylammonium Trifluorosulfate. Chemistry - A European Journal, 2011, 17, 925-929.	1.7	9
244	Siteâ€5elective Sonogashira Reactions of 1,4â€Dibromoâ€2â€(trifluoromethyl)benzene: Synthesis and Properties of Fluorinated Alkynylbenzenes. European Journal of Organic Chemistry, 2013, 2013, 8115-8134.	1.2	9
245	Towards thermally stable cyclophanediene-dihydropyrene photoswitches. Journal of Molecular Modeling, 2015, 21, 148.	0.8	9
246	Spektroskopischer Nachweis einer attraktiven Kationâ€Kationâ€∙Wechselwirkung in OHâ€funktionalisierten ionischen Flüssigkeiten: ein Hâ€Brückenâ€gebundenes kettenförmiges Trimer. Angewandte Chemie, 2018, 130, 15590-15594.	1.6	9
247	Comparing the void space and long-range structure of an ionic liquid with a neutral mixture of similar sized molecules. Journal of Molecular Liquids, 2020, 299, 112121.	2.3	9
248	Balance Between Contact and Solvent-Separated Ion Pairs in Mixtures of the Protic Ionic Liquid [Et ₃ NH][MeSO ₃] with Water Controlled by Water Content and Temperature. Journal of Physical Chemistry B, 2021, 125, 4476-4488.	1.2	9
249	Ultraviolet Optical Absorption Spectra of Water Clusters: From Molecular Dimer to Nanoscaled Cage-Like Hexakaidecahedron. Journal of Computational and Theoretical Nanoscience, 2007, 4, 453-466.	0.4	9
250	Neuartige Synthese tetrasubstituierter Î²â€Łactone: die Verwendung von Indium in der elektrochemisch unterstļtzten Reformatskyâ€Reaktion. Angewandte Chemie, 1993, 105, 1218-1220.	1.6	8
251	Electrical Energy Storage by a Magnesium-Copper-Sulfide Rechargeable Battery. Journal of the Electrochemical Society, 2017, 164, A770-A774.	1.3	8
252	Simultaneous determination of deuteron quadrupole coupling constants and rotational correlation times: the model case of hydrogen bonded ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 25597-25605.	1.3	8

#	Article	IF	CITATIONS
253	Structure, hydrogen bond dynamics and phase transition in a model ionic liquid electrolyte. Physical Chemistry Chemical Physics, 2022, 24, 6064-6071.	1.3	8
254	Ionic Liquids-Revolutionary Potential for Chemistry?. ChemPhysChem, 2006, 7, 1415-1416.	1.0	7
255	The Effects of Temperature and H/D Isotopic Dilution on the Transmission and Attenuated Total Reflection FTIR Spectra of Water. Zeitschrift Fur Physikalische Chemie, 2009, 223, 1011-1022.	1.4	7
256	Comment on "lsotope effects in liquid water by infrared spectroscopy. IV. No free OH groups in liquid water―[J. Chem. Phys. 133, 164509 (2010)]. Journal of Chemical Physics, 2011, 135, 117101; author reply 117102.	1.2	7
257	Cyclization of 1,4â€Phenylenediacrylic Acid with Thionyl Chloride and Subsequent Suzuki–Miyaura Reactions Revisited. The Products are Benzo[1,2â€ <i>b</i> ;5,6â€ <i>b</i> ′]dithiophenes and not Benzo[1,2â€ <i>b</i> ;4,5â€ <i>b</i> ′]dithiophenes. Advanced Synthesis and Catalysis, 2012, 354, 731-739.	2.1	7
258	Synthesis and Characterisation of Bridged Titanocene Oxido Complexes and Their Reactions with Water. European Journal of Inorganic Chemistry, 2014, 2014, 4068-4072.	1.0	7
259	Mechanistic insight of TiCl ₄ catalyzed formal [3 + 3] cyclization of 1,3-bis(silyl enol) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.7	T /Overlock
260	NMR Studies of Protic Ionic Liquids. Annual Reports on NMR Spectroscopy, 2018, , 147-190.	0.7	7
261	Hydrogen Bonding Between Ions of Like Charge in Ionic Liquids Characterized by NMR Deuteron Quadrupole Coupling Constants—Comparison with Salt Bridges and Molecular Systems. Angewandte Chemie, 2019, 131, 18027-18035.	1.6	7
262	Towards operando IR―and UVâ€visâ€Spectroâ€Electrochemistry: A Comprehensive Matrix Factorisation Study on Sensitive and Transient Molybdenum and Tungsten Monoâ€Dithiolene Complexes**. Chemistry Methods, 2021, 1, 22-35.	1.8	7
263	The co-crystal of copper(II) phenanthroline chloride complex hydrate with p-aminobenzoic acid: structure, cytotoxicity, thermal analysis, and DFT calculation. Monatshefte Für Chemie, 2021, 152, 323-336.	0.9	7
264	Structural similarity of an ionic liquid and the mixture of the neutral molecules. Journal of Molecular Liquids, 2021, 329, 115589.	2.3	7
265	Quadrupole Relaxation of the 7 Li + Ion in Dilute Aqueous Solution Determined by Experimental and Theoretical Methods. Journal of Molecular Modeling, 1996, 2, 379-382.	0.8	6
266	Darstellung von Tetramethylammoniumazidsulfit und Tetramethylammoniumcyanat-Schwefeldioxid-Addukt, [(CH3)4N]+[SO2N3]-, [(CH3)4N]+ [SO2OCN]- und Kristallstruktur von [(CH3)4N]+[SO2N3] Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2002, 628, 183-190.	0.6	6
267	Struktur und Eigenschaften von Methyltrifluorphosphoran CH3PF3HProfessor Dieter Naumann zum 60. Geburtstag gewidmet. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2002, 628, 1835.	0.6	6
268	Isolation, characterization and DFT studies of epoxy ring containing new withanolides from Withania coagulans Dunal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 217, 113-121.	2.0	6
269	Photo-tunable linear and nonlinear optical response of cyclophanediene-dihydropyrene photoswitches. Journal of Molecular Graphics and Modelling, 2019, 88, 261-272.	1.3	6
270	Metal/Metal Redox Isomerism Governed by Configuration. Chemistry - A European Journal, 2020, 26, 16811-16817.	1.7	6

#	Article	IF	CITATIONS
271	Anticancer evaluation of a manganese complex on HeLa and MCF-7 cancer cells: design, deterministic solvothermal synthesis approach, Hirshfeld analysis, DNA binding, intracellular reactive oxygen species production, electrochemical characterization and density functional theory. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1068-1081.	2.0	6
272	Syntheses and Structures of Novel Molecular Organotin Chalcogenides. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 150, 325-332.	0.8	5
273	Correlation of Static and Dynamic Heterogeneities in Supercooled Water by Means of Molecular Dynamics Simulations. Zeitschrift Fur Physikalische Chemie, 2009, 223, 1001-1010.	1.4	5
274	Cavity Model Challenged: The Hydrated Electron is Localized in Regions of Enhanced Water Density. ChemPhysChem, 2011, 12, 75-77.	1.0	5
275	3-Pyrenylacrylates: Synthetic, Photophysical, Theoretical and Electrochemical Investigations. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 367-377.	0.3	5
276	Charakterisierung von Wasserstoffbrücken zwischen Ionen in protischen ionischen Flüssigkeiten mittels NMRâ€Đeuteronâ€Quadrupolâ€Kopplungskonstanten – Unterschiede zu Hâ€Brücken in Amiden, Peptiden und Proteinen. Angewandte Chemie, 2017, 129, 14500-14505.	1.6	5
277	Die zweigesichtige Natur der Wasserstoffbrückenbindung in hydroxylfunktionalisierten ionischen Flüssigkeiten, offenbart durch Neutronendiffraktometrie und Molekulardynamik‣imulation. Angewandte Chemie, 2019, 131, 13019-13024.	1.6	5
278	Three in One: The Versatility of Hydrogen Bonding Interaction in Halide Salts with Hydroxyâ€Functionalized Pyridinium Cations. ChemPhysChem, 2021, 22, 1850-1856.	1.0	5
279	Aprotic Ionic Liquids: A Framework for Predicting Vaporization Thermodynamics. Molecules, 2022, 27, 2321.	1.7	5
280	Molecular Dynamics in the System Methanol-Dimethylsulphoxide. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1994, 49, 1131-1135.	0.7	4
281	On the reaction of perfluoro-aza-propene with oxygen difluoride and fluorination of bis(trifluoromethyl)-hydroxylamine. Journal of Fluorine Chemistry, 1999, 99, 145-149.	0.9	4
282	Editorial: The Complex Nature of Water at Molecular Interfaces. ChemPhysChem, 2008, 9, 2635-2636.	1.0	4
283	Site-selective Sonogashira reactions of 1,2-dibromo-3,5-difluorobenzene. Catalysis Communications, 2012, 25, 142-147.	1.6	4
284	Immune mechanism–targeted treatment of experimental epidermolysis bullosa acquisita. Expert Review of Clinical Immunology, 2015, 11, 1365-1378.	1.3	4
285	Theoretical mechanistic investigation of zinc(II) catalyzed oxidative amidation of benzyl alcohols with amines. Polyhedron, 2016, 112, 34-42.	1.0	4
286	Synthesis of methyl (±)â€2,3â€ <i>O</i> â€isopropylideneglycerate by electrochemical oxidation of (±)â€1,2â€ <i>O</i> â€isopropylideneglycerol. Liebigs Annalen Der Chemie, 1991, 1991, 503-504.	0.8	3
287	Crystal Structure of (Difluoro)methoxyoxo Iodine(V) IF2(O)OCH3. Inorganic Chemistry, 2000, 39, 4766-4768.	1.9	3
288	Cyclic Octamer of Hydroxylâ€functionalized Cations with Net Charge Q =+8 e Kinetically Stabilized by a â€~Molecular Island' of Cooperative Hydrogen Bonds. ChemPhysChem, 2020, 21, 2411-2416.	1.0	3

#	Article	IF	CITATIONS
289	Facile Synthesis of a Stable Sideâ€on Phosphinyne Complex by Redox Driven Intramolecular Cyclisation. Chemistry - A European Journal, 2020, 26, 11492-11502.	1.7	3
290	Dissecting Noncovalent Interactions in Carboxylâ€Functionalized Ionic Liquids Exhibiting Double and Single Hydrogens Bonds Between Ions of Like Charge. Chemistry - A European Journal, 2022, 28, .	1.7	3
291	Lithiumtriamidostannat(II), Li[Sn(NH2)3] - Synthese und Kristallstruktur. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1998, 624, 1395-1399.	0.6	2
292	Die molekulare Zusammensetzung des flïį¼zïį¼zssigen Schwefels. Angewandte Chemie, 2002, 114, 3331-3335.	1.6	2
293	Vibrational spectra of the tetramethylpnikogenonium ions. Journal of Molecular Spectroscopy, 2003, 219, 170-174.	0.4	2
294	Towards thermodynamically stable anionic dimers with "anti-electrostatic―hydrogen bonds overcoming like-charge repulsion. Journal of Molecular Liquids, 2021, 340, 116882.	2.3	2
295	Why Do Liquids Mix? The Mixing of Protic Ionic Liquids Sharing the Same Cation Is Apparently Driven by Enthalpy, Not Entropy. Journal of Physical Chemistry Letters, 2022, 13, 3556-3561.	2.1	2
296	Hydrogen bond redistribution effects in mixtures of protic ionic liquids sharing the same cation: non-ideal mixing with large negative mixing enthalpies. Physical Chemistry Chemical Physics, 2022, 24, 14740-14750.	1.3	2
297	Nuclear Magnetic Relaxation Study of the System Methanol/Water/Lithium Chloride. Zeitschrift Fur Physikalische Chemie, 1997, 199, 99-121.	1.4	1
298	How Does Water Bind to Metal Surfaces: Hydrogen Atoms Up or Hydrogen Atoms Down?. ChemInform, 2003, 34, no.	0.1	1
299	Preparation and Properties of Dimethyltetrafluorophosphate. Inorganic Chemistry, 2010, 49, 6421-6427.	1.9	1
300	A chemometric study in the area of feasible solution of an acid–base titration of <i>N</i> -methyl-6-oxyquinolone. RSC Advances, 2018, 8, 9922-9932.	1.7	1
301	Studying Interaction, Ion-Pair Formation, and Mixing Behavior of Protic Ionic Liquids by Means of Far-Infrared Spectroscopy. , 2018, , 527-567.		1
302	Zerlegung der Verdampfungsenthalpien ionischer Flüssigkeiten durch rein experimentelle Methoden: Coulombâ€Wechselwirkung, Wasserstoffbrücken und DispersionskrÃŧe. Angewandte Chemie, 2019, 131, 8679-8683.	1.6	1
303	Highâ€Temperature Quantum Tunneling and Hydrogen Bonding Rearrangements Characterize the Solidâ€Solid Phase Transitions in a Phosphoniumâ€Based Protic Ionic Liquid. Chemistry - A European Journal, 2022, , .	1.7	1
304	Raman Matrix Isolation Spectroscopy. Part 10. Formation of the Magic Cluster Na8 in Noble Gas Matrixes ChemInform, 2003, 34, no.	0.1	0
305	New Insight into the Transport Mechanism of Hydrated Hydroxide Ions in Water. ChemInform, 2003, 34, no.	0.1	0
306	Calculation of Clathrate-Like Water Clusters Including H2O-Buckminsterfullerene ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	CITATIONS
307	Editorial of the PCCP themed issue on "Basic Mechanisms in Energy Conversion― Physical Chemistry Chemical Physics, 2016, 18, 10680-10681.	1.3	Ο
308	Ionische Flüssigkeit mit eingebautem Farbstoff zeigt große Stokesâ€Verschiebung. Angewandte Chemie, 2017, 129, 8686-8690.	1.6	0
309	Preface. Prof. Dr. Andreas Heintz. Zeitschrift Fur Physikalische Chemie, 2013, 227, 153-156.	1.4	0
310	Thermodynamically Stable Cationic Dimers in Carboxyl-Functionalized Ionic Liquids: The Paradoxical Case of "Anti-Electrostatic―Hydrogen Bonding. Molecules, 2022, 27, 366.	1.7	0