Xiao-Lin Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486208/publications.pdf

Version: 2024-02-01

			147801	144013
76		3,433	31	57
papers		citations	h-index	g-index
	. '			
77		77	77	5574
all docs		docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Facile approach to prepare FeP2/P/C nanofiber heterostructure via electrospinning as highly performance self-supporting anode for Li/Na ion batteries. Electrochimica Acta, 2022, 403, 139682.	5.2	10
2	Waterâ€Processable and Multiscaleâ€Designed Vanadium Oxide Cathodes with Predominant Zn ²⁺ Intercalation Pseudocapacitance toward High Gravimetric/Areal/Volumetric Capacity. Small, 2022, 18, e2105796.	10.0	19
3	Understanding the Influence of C-Doping on CO ₂ Photoreduction at SnS ₂ Nanosheets: A First-Principles Study. Journal of Physical Chemistry C, 2022, 126, 1271-1280.	3.1	4
4	Fabrication of MnSe/SnSe@C heterostructures for high-performance Li/Na storage. New Journal of Chemistry, 2022, 46, 5848-5860.	2.8	10
5	Surface Defect Modulation with Intercalation Ion Doping Vanadium Oxide to Enhance Zinc Storage Performance. Energy & Defect Modulation with Intercalation Ion Doping Vanadium Oxide to Enhance Zinc Storage Performance.	5.1	2
6	Creating Unidirectional Fast Ion Diffusion Channels in G/NiS ₂ â€MoS ₂ ÂHeterostructures for Highâ€Performance Sodiumâ€lon Batteries. Small, 2022, 18, e2200782.	10.0	24
7	Rational Design of an Interfacial Bilayer for Aqueous Dendrite-Free Zinc Anodes. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 954-960.	8.0	14
8	Intrinsic anion vacancy of Mo6X6 (XÂ=ÂS, Se, Te) nanowires as a promising nitrogen fixation catalysis: A first-principles study. Chemical Physics Letters, 2022, 802, 139752.	2.6	0
9	The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study. Dalton Transactions, 2021, 50, 10252-10260.	3.3	8
10	Ultrafine Co _{0.85} Se nanocrystals dispersed in 3D CNT network as a flexible free-standing anode for high-performance lithium-ion battery. New Journal of Chemistry, 2021, 45, 12168-12177.	2.8	1
11	Modified Graphene Sheets as Promising Cathode Catalysts for Li–O ₂ Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 4363-4370.	3.1	12
12	Hollow Co3O4@N-doped carbon nanocrystals anchored on carbon nanotubes for freestanding anode with superior Li/Na storage performance. Chemical Engineering Journal, 2021, 415, 128861.	12.7	19
13	Heterostructured multi-yolk-shell SnO2/Mn2SnO4@C nanoboxes for stable and highly efficient Li/Na storage. Journal of Power Sources, 2021, 506, 230243.	7.8	19
14	Stability and electronic properties of $\hat{l}\pm/\hat{l}^2$ -Mo6S6 nanowires encapsulated inside carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114891.	2.7	0
15	Single transition metal atom modified MoSe2 as a promising electrocatalyst for nitrogen Fixation: A first-principles study. Chemical Physics Letters, 2021, 780, 138939.	2.6	5
16	A 2D ZnSe/BiOX vertical heterostructure as a promising photocatalyst for water splitting: a first-principles study. Journal Physics D: Applied Physics, 2020, 53, 055108.	2.8	13
17	Freestanding, Hierarchical, and Porous Bilayered Na _{<i>x</i>}	8.0	82
18	MesoporousÂMn-dopedÂand carbon-coated NaTi2(PO4)3 nanocrystals as an anode material for improved performance of sodium-ion hybrid capacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 17550-17562.	2.2	5

#	Article	IF	CITATIONS
19	Scalable In Situ Reactive Assembly of Polypyrroleâ€Coated MnO ₂ Nanowire and Carbon Nanotube Composite as Freestanding Cathodes for High Performance Aqueous Znâ€lon Batteries. ChemElectroChem, 2020, 7, 2762-2770.	3.4	45
20	Yolk-shell spheres constructed of ultrathin MoSe2 nanosheets as a high-performance anode for sodium dual ion batteries. Solid State Ionics, 2020, 353, 115373.	2.7	27
21	Intrinsic defect engineered Janus MoSSe sheet as a promising photocatalyst for water splitting. RSC Advances, 2020, 10, 10816-10825.	3.6	22
22	Porous N-doped carbon sheets wrapped MnO in 3D carbon networks as high-performance anode for Li-ion batteries. Electrochimica Acta, 2020, 342, 136115.	5.2	37
23	Bonding–antibonding state transition induces multiple electron modulations toward oxygen reduction reaction electrocatalysis. New Journal of Chemistry, 2020, 44, 8191-8197.	2.8	6
24	Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study. Progress in Natural Science: Materials International, 2019, 29, 335-340.	4.4	28
25	Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-lon hybrid supercapacitors. Journal of Power Sources, 2019, 437, 226934.	7.8	57
26	Well-dispersed MnO-quantum-dots/N-doped carbon layer anchored on carbon nanotube as free-standing anode for high-performance Li-lon batteries. Electrochimica Acta, 2019, 319, 302-311.	5.2	16
27	Tuning the electronic properties of monolayer MoS2, MoSe2 and MoSSe by applying z-axial strain. Chemical Physics Letters, 2019, 730, 191-197.	2.6	29
28	Hierarchically Pomegranateâ€Like MnO@porous Carbon Microspheres as an Enhancedâ€Capacity Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 2891-2900.	3.4	15
29	Hierarchical MoS ₂ @Nâ€Doped Carbon Hollow Spheres with Enhanced Performance in Sodium Dualâ€ion Batteries. ChemElectroChem, 2019, 6, 661-667.	3.4	24
30	Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime. Npj Computational Materials, 2018, 4, .	8.7	99
31	Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. Journal of Materials Chemistry C, 2018, 6, 1693-1700.	5.5	164
32	3D nanocomposite archiecture constructed by reduced graphene oxide, thermally-treated protein and mesoporous NaTi2(PO4)3 nanocrystals as free-standing electrodes for advanced sodium ion battery. Journal of Materials Science: Materials in Electronics, 2018, 29, 9258-9267.	2.2	10
33	Engineering Ultrathin C ₃ N ₄ Quantum Dots on Graphene as a Metal-Free Water Reduction Electrocatalyst. ACS Catalysis, 2018, 8, 3965-3970.	11.2	130
34	Hierarchical Porous Nitrogenâ€Doped Carbon Constructed of Crumpled and Interconnected Grapheneâ€Like Nanosheets for Sodiumâ€Ion Batteries and Allâ€Solidâ€State Symmetric Supercapacitors. ChemElectroChem, 2018, 5, 546-557.	3.4	18
35	Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Research, 2018, 11, 1294-1300.	10.4	103
36	The effects of subsurface Ov and Tiint of anatase (1†0†1) surface on CO2 conversion: A first-principles study. Computational Materials Science, 2018, 155, 424-430.	3.0	8

#	Article	IF	Citations
37	Ultrafast hetero-assembly of monolithic interwoven V2O5 nanobelts/carbon nanotubes architectures for high-energy alkali-ion batteries. Journal of Power Sources, 2018, 395, 295-304.	7.8	37
38	Free-standing Hierarchical Porous Assemblies of Commercial TiO 2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries. Electrochimica Acta, 2017, 236, 33-42.	5.2	29
39	Protein-assisted assembly of mesoporous nanocrystals and carbon nanotubes for self-supporting high-performance sodium electrodes. Journal of Materials Chemistry A, 2017, 5, 2749-2758.	10.3	24
40	A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9900-9909.	10.3	86
41	A Facile and Low-Cost Route to Heteroatom Doped Porous Carbon Derived from Broussonetia Papyrifera Bark with Excellent Supercapacitance and CO2 Capture Performance. Scientific Reports, 2016, 6, 22646.	3.3	52
42	MoS ₂ â€Quantumâ€Dotâ€Interspersed Li ₄ Ti ₅ O ₁₂ Nanoshee with Enhanced Performance for Liâ€and Naâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 3349-3358.	ts 14.9	128
43	Lithium-Ion Batteries: Rational Construction of a Functionalized V2O5Nanosphere/MWCNT Layer-by-Layer Nanoarchitecture as Cathode for Enhanced Performance of Lithium-Ion Batteries (Adv.) Tj ETQq1 1	01784314	l I ngBT /Over
44	Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe. Scientific Reports, 2015, 5, 14115.	3.3	50
45	Rational Construction of a Functionalized V ₂ O ₅ Nanosphere/MWCNT Layerâ€byâ€Layer Nanoarchitecture as Cathode for Enhanced Performance of Lithiumâ€lon Batteries. Advanced Functional Materials, 2015, 25, 5633-5639.	14.9	62
46	Electronic and magnetism properties of two-dimensional stacked nickel hydroxides and nitrides. Scientific Reports, 2015, 5, 11656.	3.3	10
47	Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries. Journal of Materials Chemistry A, 2015, 3, 11246-11252.	10.3	136
48	Ce ₂ O ₂ S anchored on graphitized carbon with tunable architectures as a new promising anode for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10026-10030.	10.3	10
49	First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. Journal of Physical Chemistry Letters, 2015, 6, 5002-5008.	4.6	274
50	Self-assembled FeS ₂ cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 2090-2096.	10.3	122
51	Phonon mean free path spectrum and thermal conductivity for Silâ^'xGex nanowires. Applied Physics Letters, 2014, 104, .	3.3	46
52	Quantum confinement in graphene quantum dots. Physica Status Solidi - Rapid Research Letters, 2014, 8, 436-440.	2.4	18
53	Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS ₂ . Journal of Materials Chemistry A, 2014, 2, 2101-2109.	10.3	92
54	Electrochemically reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitors. RSC Advances, 2014, 4, 13673.	3.6	48

#	Article	IF	Citations
55	Size and boundary scattering controlled contribution of spectral phonons to the thermal conductivity in graphene ribbons. Journal of Applied Physics, 2014, 115, .	2.5	28
56	Self-Assembled Three-Dimensional Graphene-Based Aerogel with Embedded Multifarious Functional Nanoparticles and Its Excellent Photoelectrochemical Activities. ACS Sustainable Chemistry and Engineering, 2014, 2, 741-748.	6.7	143
57	An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3163.	10.3	91
58	A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials. Scientific Reports, 2014, 4, 5085.	3.3	91
59	In situ shape and phase transformation synthesis of Co3S4 nanosheet arrays for high-performance electrochemical supercapacitors. RSC Advances, 2013, 3, 22922.	3.6	66
60	Fe3O4–carbon nanocomposites via a simple synthesis as anode materials for rechargeable lithium ion batteries. CrystEngComm, 2013, 15, 9849.	2.6	28
61	Spiral growth of topological insulator Sb2Te3 nanoplates. Applied Physics Letters, 2013, 102, .	3.3	32
62	Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions. Journal of Applied Physics, 2013, 114 , .	2.5	49
63	Significantly improved high-rate Li-ion batteries anode by encapsulating tin dioxide nanocrystals into mesotunnels. CrystEngComm, 2013, 15, 8537.	2.6	21
64	R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons. Journal of Materials Chemistry A, 2013, $1,5341$.	10.3	118
65	Electrostatic properties of few-layer MoS2 films. AIP Advances, 2013, 3, .	1.3	46
66	Fermi level tuning of topological insulator Bi2(SexTe1â^'x)3 nanoplates. Journal of Applied Physics, 2013, 113, 024306.	2.5	12
67	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Misplay="inline"> <mmi:msub><mmi:mrow /><mml:mn>2</mml:mn>Se<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>and Bi<mml:math< td=""><td>3.2</td><td>49</td></mml:math<></mml:math </mmi:mrow </mmi:msub>	3.2	49
68	Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties. RSC Advances, 2012, 2, 10694.	3.6	19
69	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> Se <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>induced by the quantum size effects of Pb adlayers.</mml:math 	3.2	19
70	Physical Review B, 2012, 86, . Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material. Journal of Materials Chemistry, 2012, 22, 11765.	6.7	119
71	Thermal transport in graphyne nanoribbons. Physical Review B, 2012, 85, .	3.2	103
72	Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 559-562.	2.1	49

XIAO-LIN WEI

#	Article	lF	CITATIONS
73	Energy gaps in nitrogen delta-doping graphene: A first-principles study. Applied Physics Letters, 2011, 99, 012107.	3.3	25
74	Modified Morphology of Graphene Sheets by Argon-Atom Bombardment: Molecular Dynamics Simulations. Journal of Nanoscience and Nanotechnology, 2011, 11, 10863-10867.	0.9	3
75	Molecular dynamics simulation of Argon-atom bombardment on graphene sheets. , 2010, , .		0
76	The role of permanent and induced electrostatic dipole moments for Schottky barriers in Janus MXY/graphene heterostructures: a first-principles study. Dalton Transactions, 0, , .	3.3	11