Nicholas H Barton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Why did theÂ <i>Wolbachia</i> Âtransinfection cross the road? drift, deterministic dynamics, and disease control. Evolution Letters, 2022, 6, 92-105.	3.3	6
2	The response of a metapopulation to a changing environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210009.	4.0	4
3	The "New Synthesisâ€: Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
4	Polygenic local adaptation in metapopulations: A stochastic ecoâ€evolutionary model. Evolution; International Journal of Organic Evolution, 2021, 75, 1030-1045.	2.3	20
5	Homage to Felsenstein 1981, or why are there so few/many species?. Evolution; International Journal of Organic Evolution, 2021, 75, 978-988.	2.3	13
6	Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. Proceedings of the United States of America, 2021, 118, .	7.1	46
7	Dynamic maximum entropy provides accurate approximation of structured population dynamics. PLoS Computational Biology, 2021, 17, e1009661.	3.2	1
8	On the completion of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190530.	4.0	26
9	Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies. Annual Review of Genomics and Human Genetics, 2019, 20, 461-493.	6.2	186
10	An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. ELife, 2019, 8, .	6.0	58
11	Mating system variation in hybrid zones: facilitation, barriers and asymmetries to gene flow. New Phytologist, 2019, 224, 1035-1047.	7.3	46
12	Why structure matters. ELife, 2019, 8, .	6.0	107
13	Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering. Molecular Ecology Resources, 2018, 18, 988-999.	4.8	9
14	Tread Lightly Interpreting Polygenic Tests of Selection. Genetics, 2018, 208, 1351-1355.	2.9	98
15	Estimating Barriers to Gene Flow from Distorted Isolation-by-Distance Patterns. Genetics, 2018, 208, 1231-1245.	2.9	37
16	Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Nonself-Recognition System. Genetics, 2018, 209, 861-883.	2.9	19
17	The Spread of an Inversion with Migration and Selection. Genetics, 2018, 208, 377-382.	2.9	70
18	The consequences of an introgression event. Molecular Ecology, 2018, 27, 4973-4975.	3.9	4

NICHOLAS H BARTON

#	Article	IF	CITATIONS
19	Replicability of Introgression Under Linked, Polygenic Selection. Genetics, 2018, 210, 1411-1427.	2.9	17
20	Introgression of a Block of Genome Under Infinitesimal Selection. Genetics, 2018, 209, 1279-1303.	2.9	33
21	Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks. Genetics, 2017, 205, 1335-1351.	2.9	61
22	Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti. Theoretical Population Biology, 2017, 115, 45-60.	1.1	71
23	The sources of adaptive variation. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162864.	2.6	174
24	When Does Frequency-Independent Selection Maintain Genetic Variation?. Genetics, 2017, 207, 653-668.	2.9	16
25	Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biology, 2017, 15, e2001894.	5.6	202
26	A General Approximation for the Dynamics of Quantitative Traits. Genetics, 2016, 202, 1523-1548.	2.9	10
27	Sewall Wright on Evolution in Mendelian Populations and the "Shifting Balance― Genetics, 2016, 202, 3-4.	2.9	4
28	Richard Hudson and Norman Kaplan on the Coalescent Process. Genetics, 2016, 202, 865-866.	2.9	3
29	Limits to adaptation along environmental gradients. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6401-6406.	7.1	176
30	Likelihoodâ€based inference of population history from low overage <i>de novo</i> genome assemblies. Molecular Ecology, 2014, 23, 198-211.	3.9	28
31	Diverse forms of selection in evolution and computer science. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10398-10399.	7.1	5
32	Coalescent simulation in continuous space. Bioinformatics, 2013, 29, 955-956.	4.1	24
33	Limits to the Rate of Adaptive Substitution in Sexual Populations. PLoS Genetics, 2012, 8, e1002740.	3.5	98
34	A likelihoodâ€based comparison of population histories in a parasitoid guild. Molecular Ecology, 2012, 21, 4605-4617.	3.9	19
35	The contribution of statistical physics to evolutionary biology. Trends in Ecology and Evolution, 2011, 26, 424-432.	8.7	67
36	A NEW MODEL FOR EXTINCTION AND RECOLONIZATION IN TWO DIMENSIONS: QUANTIFYING PHYLOGEOGRAPHY. Evolution; International Journal of Organic Evolution, 2010, 64, 2701-2715.	2.3	57

#	Article	IF	CITATIONS
37	THE EVOLUTION OF STRONG REPRODUCTIVE ISOLATION. Evolution; International Journal of Organic Evolution, 2009, 63, 1171-1190.	2.3	127
38	HYBRIDIZATION OFBOMBINA BOMBINAANDB. VARIEGATA(ANURA, DISCOGLOSSIDAE) AT A SHARP ECOTONE IN WESTERN UKRAINE: COMPARISONS ACROSS TRANSECTS AND OVER TIME. Evolution; International Journal of Organic Evolution, 2006, 60, 583-600.	2.3	71
39	The Effects of Genetic and Geographic Structure on Neutral Variation. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 99-125.	8.3	215
40	Understanding quantitative genetic variation. Nature Reviews Genetics, 2002, 3, 11-21.	16.3	727
41	Evolving evolvability. Nature, 2000, 407, 457-458.	27.8	62
42	Perspective: A Critique of Sewall Wright's Shifting Balance Theory of Evolution. Evolution; International Journal of Organic Evolution, 1997, 51, 643.	2.3	198
43	PERSPECTIVE: A CRITIQUE OF SEWALL WRIGHT'S SHIFTING BALANCE THEORY OF EVOLUTION. Evolution; International Journal of Organic Evolution, 1997, 51, 643-671.	2.3	486
44	RAPID LABORATORY EVOLUTION OF ADULT LIFE-HISTORY TRAITS IN <i>DROSOPHILA MELANOGASTER</i> IN RESPONSE TO TEMPERATURE. Evolution; International Journal of Organic Evolution, 1995, 49, 538-544.	2.3	83
45	THE GENETIC STRUCTURE OF A HYBRID ZONE BETWEEN TWO CHROMOSOME RACES OF THE <i>>SCELOPORUS GRAMMICUS</i> > COMPLEX (SAURIA, PHRYNOSOMATIDAE) IN CENTRAL MEXICO. Evolution; International Journal of Organic Evolution, 1995, 49, 9-36.	2.3	80
46	VARIATION IN MATING CALL ACROSS THE HYBRID ZONE BETWEEN THE FIRE-BELLIED TOADS <i>BOMBINA BOMBINA</i> AND <i>B. VARIEGATA</i> . Evolution; International Journal of Organic Evolution, 1992, 46, 595-607.	2.3	20
47	THE GENETIC STRUCTURE OF THE HYBRID ZONE BETWEEN THE FIRE-BELLIED TOADS <i>BOMBINA BOMBINA</i> AND <i>B. VARIEGATA</i> : COMPARISONS BETWEEN TRANSECTS AND BETWEEN LOCI. Evolution; International Journal of Organic Evolution, 1991, 45, 237-261.	2.3	181
48	Strong Natural Selection in a Warning-Color Hybrid Zone. Evolution; International Journal of Organic Evolution, 1989, 43, 421.	2.3	190
49	STRONG NATURAL SELECTION IN A WARNING-COLOR HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1989, 43, 421-431.	2.3	234
50	A COMPARISON OF THREE INDIRECT METHODS FOR ESTIMATING AVERAGE LEVELS OF GENE FLOW. Evolution; International Journal of Organic Evolution, 1989, 43, 1349-1368.	2.3	1,204
51	Genetic Analysis of a Hybrid Zone Between the Fire-Bellied Toads, Bombina bombina and B. variegata, Near Cracow in Southern Poland. Evolution; International Journal of Organic Evolution, 1986, 40, 1141.	2.3	190
52	GENETIC ANALYSIS OF A HYBRID ZONE BETWEEN THE FIRE-BELLIED TOADS, <i>BOMBINA BOMBINA</i> AND <i>B. VARIEGATA</i> , NEAR CRACOW IN SOUTHERN POLAND. Evolution; International Journal of Organic Evolution, 1986, 40, 1141-1159.	2.3	287