Lianbin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485986/publications.pdf

Version: 2024-02-01

76326 40979 9,001 100 40 93 citations h-index g-index papers 114 114 114 10718 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MXene Ti ₃ C ₂ : An Effective 2D Light-to-Heat Conversion Material. ACS Nano, 2017, 11, 3752-3759.	14.6	1,258
2	Hydrophobic Lightâ€ŧoâ€Heat Conversion Membranes with Selfâ€Healing Ability for Interfacial Solar Heating. Advanced Materials, 2015, 27, 4889-4894.	21.0	821
3	Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO ₂ Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting. Nano Letters, 2013, 13, 14-20.	9.1	692
4	Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Materials, 2012, 4, e8-e8.	7.9	441
5	Self-Floating Carbon Nanotube Membrane on Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1223-1230.	6.7	440
6	Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction. ACS Nano, 2013, 7, 1709-1717.	14.6	380
7	Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. Journal of Materials Chemistry A, 2015, 3, 2844-2852.	10.3	293
8	Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry A, 2017, 5, 16212-16219.	10.3	259
9	A self-cleaning underwater superoleophobic mesh for oil-water separation. Scientific Reports, 2013, 3, 2326.	3.3	252
10	Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale, 2016, 8, 14600-14607.	5.6	179
11	Hyaluronic Acid-Based Dissolving Microneedle Patch Loaded with Methotrexate for Improved Treatment of Psoriasis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43588-43598.	8.0	179
12	Mechanically Stable Antireflection and Antifogging Coatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination. Langmuir, 2008, 24, 10851-10857.	3.5	176
13	Rational design of nanomaterials for water treatment. Nanoscale, 2015, 7, 17167-17194.	5.6	176
14	Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale, 2012, 4, 7038.	5.6	171
15	A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 2015, 3, 18963-18969.	10.3	171
16	Layer-by-Layer Deposition of Poly(diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate—Facile Method to Prepare a Superhydrophobic Surface. Chemistry of Materials, 2007, 19, 948-953.	6.7	162
17	Metallosupramolecular Photonic Elastomers with Selfâ€Healing Capability and Angleâ€Independent Color. Advanced Materials, 2019, 31, e1805496.	21.0	160
18	Remotely Controllable Liquid Marbles. Advanced Materials, 2012, 24, 4756-4760.	21.0	115

#	Article	IF	CITATIONS
19	Multifunctional Ag ₃ PO ₄ -rGO-Coated Textiles for Clean Water Production by Solar-Driven Evaporation, Photocatalysis, and Disinfection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6343-6350.	8.0	110
20	Responsive Block Copolymer Photonic Microspheres. Advanced Materials, 2018, 30, e1707344.	21.0	102
21	Salting-in Effect of Zwitterionic Polymer Hydrogel Facilitates Atmospheric Water Harvesting. , 2022, 4, 511-520.		94
22	Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Research, 2020, 13, 2525-2533.	10.4	92
23	Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region. Journal of Colloid and Interface Science, 2008, 319, 302-308.	9.4	91
24	A Centimeterâ€Scale Inorganic Nanoparticle Superlattice Monolayer with Nonâ€Closeâ€Packing and its High Performance in Memory Devices. Advanced Materials, 2018, 30, e1800595.	21.0	80
25	Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing. Nano Energy, 2021, 85, 106004.	16.0	68
26	Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy, 2022, 93, 106906.	16.0	64
27	Three-Dimensionally Structured Polypyrrole-Coated <i>Setaria viridis</i> Spike Composites for Efficient Solar Steam Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9027-9035.	8.0	63
28	Dopamine-Substituted Multidomain Peptide Hydrogel with Inherent Antimicrobial Activity and Antioxidant Capability for Infected Wound Healing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29380-29391.	8.0	63
29	Self-adhesive photothermal hydrogel films for solar-light assisted wound healing. Journal of Materials Chemistry B, 2019, 7, 3644-3651.	5.8	60
30	Supramolecular Photonic Elastomers with Brilliant Structural Colors and Broadâ€Spectrum Responsiveness. Advanced Functional Materials, 2020, 30, 2000008.	14.9	59
31	Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. Advanced Materials, 2022, 34, e2110488.	21.0	59
32	Efficient and Anisotropic Fog Harvesting on a Hybrid and Directional Surface. Advanced Materials Interfaces, 2017, 4, 1600801.	3.7	58
33	Moist-Induced Electricity Generation by Electrospun Cellulose Acetate Membranes with Optimized Porous Structures. ACS Applied Materials & Structures. ACS Applied Materials & Structures. Porous Structures. Por un Porous Structures. Porous Structures. Por un P	8.0	58
34	Responsive Photonic Hydrogel-Based Colorimetric Sensors for Detection of Aldehydes in Aqueous Solution. Langmuir, 2018, 34, 3987-3992.	3.5	55
35	Intelligent environmental nanomaterials. Environmental Science: Nano, 2018, 5, 811-836.	4.3	54
36	Dacarbazine-Loaded Hollow Mesoporous Silica Nanoparticles Grafted with Folic Acid for Enhancing Antimetastatic Melanoma Response. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21673-21687.	8.0	53

#	Article	IF	CITATIONS
37	Responsive Photonic Crystal Microcapsules of Block Copolymers with Enhanced Monochromaticity. ACS Nano, 2020, 14, 16057-16064.	14.6	53
38	Sono/Photodynamic Nanomedicineâ€Elicited Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2008061.	14.9	53
39	Are vacuum-filtrated reduced graphene oxide membranes symmetric?. Nanoscale, 2016, 8, 1108-1116.	5.6	50
40	BiVO4 and reduced graphene oxide composite hydrogels for solar-driven steam generation and decontamination of polluted water. Solar Energy Materials and Solar Cells, 2021, 222, 110952.	6.2	50
41	Polyethylenimine Hybrid Thin-Shell Hollow Mesoporous Silica Nanoparticles as Vaccine Self-Adjuvants for Cancer Immunotherapy. ACS Applied Materials & 2019, 11, 47798-47809.	8.0	48
42	Moebius strips of chiral block copolymers. Nature Communications, 2019, 10, 4090.	12.8	44
43	Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities. Journal of Colloid and Interface Science, 2021, 602, 406-414.	9.4	44
44	Composite Polyelectrolyte Photothermal Hydrogel with Anti-biofouling and Antibacterial Properties for the Real-World Application of Solar Steam Generation. ACS Applied Materials & Interfaces, 2022, 14, 16546-16557.	8.0	41
45	Recent progress in responsive photonic crystals of block copolymers. Journal of Materials Chemistry C, 2020, 8, 16633-16647.	5.5	39
46	Cationic Photothermal Hydrogels with Bacteria-Inhibiting Capability for Freshwater Production via Solar-Driven Steam Generation. ACS Applied Materials & Interfaces, 2021, 13, 37724-37733.	8.0	39
47	Layer-by-Layer Assembled Polyampholyte Microgel Films for Simultaneous Release of Anionic and Cationic Molecules. Langmuir, 2010, 26, 8187-8194.	3.5	38
48	Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect. Global Challenges, 2017, 1, 1700019.	3.6	38
49	On-demand release of CO2 from photothermal hydrogels for accelerating skin wound healing. Chemical Engineering Journal, 2021, 403, 126353.	12.7	38
50	Transdermal delivery of rapamycin with poor water-solubility by dissolving polymeric microneedles for anti-angiogenesis. Journal of Materials Chemistry B, 2020, 8, 928-934.	5.8	37
51	Tunable Photonic Microspheres of Combâ€Like Supramolecules. Small, 2020, 16, e2001315.	10.0	37
52	Squaraine-based AlEgens for reversible mechanochromism, sensitive and selective hypochlorite detection and photostable far-red fluorescence cell imaging. Materials Chemistry Frontiers, 2020, 4, 2688-2696.	5.9	35
53	Enhanced <i>in vitro</i> efficacy for inhibiting hypertrophic scar by bleomycin-loaded dissolving hyaluronic acid microneedles. Journal of Materials Chemistry B, 2019, 7, 6604-6611.	5.8	33
54	Bioinspired Photonic Ionogels as Interactively Visual Ionic Skin with Optical and Electrical Synergy. Small, 2021, 17, e2103271.	10.0	33

#	Article	IF	Citations
55	Gelatin-based photonic hydrogels for visual detection of pathogenic Pseudomonas aeruginosa. Sensors and Actuators B: Chemical, 2021, 329, 129137.	7.8	30
56	Enhanced CH4 yields by interfacial heating-induced hot water steam during photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120635.	20.2	30
57	Polymer microneedles with interconnected porous structures <i>via</i> a phase inversion route for transdermal medical applications. Journal of Materials Chemistry B, 2020, 8, 2032-2039.	5.8	30
58	Kinetically Dependent Self-Assembly of Chiral Block Copolymers under 3D Confinement. Macromolecules, 2020, 53, 4214-4223.	4.8	28
59	Fluorescent Metallosupramolecular Elastomers for Fast and Ultrasensitive Humidity Sensing. ACS Applied Materials & Description (1998) A	8.0	24
60	Photonic Hydrogels for Synergistic Visual Bacterial Detection and On-Site Photothermal Disinfection. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5856-5866.	8.0	24
61	NIRâ€Lightâ€Activated Ratiometric Fluorescent Hybrid Micelles for High Spatiotemporally Controlled Biological Imaging and Chemotherapy. Small, 2020, 16, e2005667.	10.0	23
62	Alginate hydrogel-coated syringe needles for rapid haemostasis of vessel and viscera puncture. Biomaterials, 2020, 249, 120019.	11.4	23
63	Dynamic regulation of photoluminescence based on mechanochromic photonic elastomers. Chemical Engineering Journal, 2021, 426, 131259.	12.7	23
64	Microneedle Patches with O ₂ Propellant for Deeply and Fast Delivering Photosensitizers: Towards Improved Photodynamic Therapy. Advanced Science, 2022, 9, .	11,2	23
65	Patterning Layered Polymeric Multilayer Films by Room-Temperature Nanoimprint Lithography. Macromolecular Rapid Communications, 2006, 27, 505-510.	3.9	20
66	Self-healing and recyclable photonic elastomers based on a water soluble supramolecular polymer. Materials Chemistry Frontiers, 2019, 3, 2707-2715.	5.9	20
67	Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chemical Engineering Journal, 2021, 419, 129557.	12.7	20
68	Gold nanoparticle-guarded large-pore mesoporous silica nanocomposites for delivery and controlled release of cytochrome c. Journal of Colloid and Interface Science, 2021, 589, 34-44.	9.4	19
69	3D confined assembly of polymer-tethered gold nanoparticles into size-segregated structures. Materials Chemistry Frontiers, 2019, 3, 209-215.	5.9	18
70	Shape-Anisotropic Diblock Copolymer Particles with Varied Internal Structures. Langmuir, 2019, 35, 3461-3469.	3.5	18
71	Selfâ€Assembled Colloidal Nanopatterns toward Unnatural Optical Metaâ€Materials. Advanced Functional Materials, 2021, 31, 2008246.	14.9	17
72	Shape memory photonic gels enable reversible regulation of photoluminescence: Towards multiple anti-counterfeiting. Chemical Engineering Journal, 2022, 446, 136879.	12.7	17

#	Article	IF	Citations
73	Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. ACS Applied Materials & Interfaces, 2019, 11, 42734-42743.	8.0	15
74	Revealable photonic prints with oppositely responsive polymers for improved visual sensing. Journal of Materials Chemistry C, 2020, 8, 9286-9292.	5. 5	15
75	Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction. Journal of Materials Chemistry B, 2021, 9, 5476-5483.	5 . 8	15
76	Solvent Quality-Mediated Regioselective Modification of Gold Nanorods with Thiol-Terminated Polymers. Langmuir, 2020, 36, 15162-15168.	3.5	15
77	Bioinspired Supramolecular Photonic Composites: Construction and Emerging Applications. Macromolecular Rapid Communications, 2022, 43, e2100867.	3.9	14
78	Kinetically Controlled Self-Assembly of Block Copolymers into Segmented Wormlike Micelles in Microfluidic Chips. Langmuir, 2019, 35, 141-149.	3.5	13
79	Chain-length effect on binary superlattices of polymer-tethered nanoparticles. Materials Chemistry Frontiers, 2020, 4, 2089-2095.	5.9	13
80	Transparent photothermal hydrogels for wound visualization and accelerated healing. Fundamental Research, 2022, 2, 268-275.	3.3	13
81	An AIE-based metallo-supramolecular assembly enabling an indicator displacement assay inside living cells. Chemical Communications, 2018, 54, 8921-8924.	4.1	12
82	Bioinspired structural color nanocomposites with healable capability. Polymer Chemistry, 2020, 11, 6413-6422.	3.9	12
83	Drying and Nondrying Layer-by-Layer Assembly for the Fabrication of Sodium Silicate/TiO ₂ Nanoparticle Composite Films. Langmuir, 2012, 28, 1816-1823.	3 . 5	10
84	High switching uniformity in HfOx-based memristors by adding polydopamine-derived Ag nanoparticles on the electrode. Applied Physics Letters, 2021, 118 , .	3.3	9
85	Light-triggered disassembly of photo-responsive gold nanovesicles for controlled drug release. Materials Chemistry Frontiers, 2020, 4, 2805-2811.	5.9	8
86	Lightâ€responsive bilayered hydrogel for freshwater production from surface soil moisture. EcoMat, 2021, 3, e12144.	11.9	8
87	Bioinspired Janus particles for hydrophobic modification of hydrogels with photothermal antibacterial capability. Journal of Colloid and Interface Science, 2022, 616, 93-100.	9.4	8
88	Hierarchical Microphase Behaviors of Chiral Block Copolymers under Kinetic and Thermodynamic Control. CCS Chemistry, 2022, 4, 2460-2468.	7.8	7
89	Photonic Crystal-Enhanced Photodynamic Antibacterial Therapy. CCS Chemistry, 2023, 5, 624-632.	7.8	7
90	Microfluidics-assisted optimization of highly adhesive haemostatic hydrogel coating for arterial puncture. Bioactive Materials, 2022, 12, 133-142.	15.6	6

#	Article	IF	CITATIONS
91	Application of hydrogel patches to the upper margins of N95 respirators as a novel antifog measure for goggles: A prospective, self-controlled study. Journal of the American Academy of Dermatology, 2020, 83, 1539-1541.	1.2	5
92	Shaping Block Copolymer Microparticles by pH-Responsive Core-Cross-Linked Polymeric Nanoparticles. Langmuir, 2021, 37, 454-460.	3.5	5
93	Flow hydrodynamics-dependent assembly of polymer-tethered gold nanoparticles in microfluidic channels. Materials Chemistry Frontiers, 2020, 4, 3240-3250.	5.9	4
94	Flow-Induced Micellar Morphological Transformation in Microfluidic Chips under Nonequilibrium State: From Aggregates to Spherical Micelles. Langmuir, 2020, 36, 5377-5384.	3.5	4
95	Generation of Aligned Electrospun Fibers by Using Insulating and Hydrophobic Collectors. ACS Applied Polymer Materials, 2020, 2, 2151-2159.	4.4	4
96	Kinetic Control of Length and Morphology of Segmented Polymeric Nanofibers in Microfluidic Chips. Langmuir, 2020, 36, 13364-13370.	3 . 5	4
97	Structure-Controlled Preparation of Multicompartment Micelles with Tunable Emission through Hydrodynamics-Dependent Self-Assembly in Microfluidic Chips. Langmuir, 2021, 37, 13099-13106.	3.5	2
98	Shaping Block Copolymer Microparticles by Positively Charged Polymeric Nanoparticles. Macromolecular Rapid Communications, 2022, 43, e2200143.	3.9	1
99	Selfâ€Assembled Colloidal Nanopatterns: Selfâ€Assembled Colloidal Nanopatterns toward Unnatural Optical Metaâ€Materials (Adv. Funct. Mater. 12/2021). Advanced Functional Materials, 2021, 31, 2170080.	14.9	0
100	CHAPTER 6. Biomimetic Materials for Efficient Atmospheric Water Collection. RSC Smart Materials, 2016, , 165-184.	0.1	0