Miao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485738/publications.pdf

Version: 2024-02-01

201385 276539 1,894 66 27 41 citations h-index g-index papers 66 66 66 1219 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A magnetic control reconfigurable coded electromagnetic absorbing metamaterial. Composites Science and Technology, 2022, 217, 109098.	3.8	13
2	Magneto-induced Mullins effect of anisotropic MREs under compression mode. Smart Materials and Structures, 2021, 30, 024003.	1.8	1
3	Improving transient magnetorheological response of magnetorheological elastomer by incorporating CIP@FeNi particles. Smart Materials and Structures, 2021, 30, 024002.	1.8	8
4	Design and co-optimization of a laminated isolation bearing based on magnetorheological elastomer. Mechanical Systems and Signal Processing, 2021, 159, 107843.	4.4	20
5	A pre-magnetized NdFeB-particle reinforced magnetorheological elastomer. Smart Materials and Structures, 2021, 30, 014002.	1.8	6
6	Fault detection and fault tolerant control of vehicle semi-active suspension system with magneto-rheological damper. Smart Materials and Structures, 2021, 30, 014004.	1.8	17
7	Effects of functional alkali in magnetorheological finishing fluid. Smart Materials and Structures, 2021, 30, 024001.	1.8	7
8	3D printed shape-programmable magneto-active soft matter for biomimetic applications. Composites Science and Technology, 2020, 188, 107973.	3.8	109
9	Time delay analysis and constant time-delay compensation control for MRE vibration control system with multiple-frequency excitation. Smart Materials and Structures, 2020, 29, 014001.	1.8	26
10	Synthesis and microwave absorption properties of Fe@carbon fibers. RSC Advances, 2020, 10, 32561-32568.	1.7	19
11	Preparation of Reduced Graphene Oxide/Magnetic Metal Composites and Its Electromagnetic Wave Absorption Properties. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012039.	0.3	0
12	Experimental study on shock control of a vehicle semi-active suspension with magneto-rheological damper. Smart Materials and Structures, 2020, 29, 074002.	1.8	20
13	Fuzzy-neural network control for a Magnetorheological elastomer vibration isolation system. Smart Materials and Structures, 2020, 29, 074001.	1.8	18
14	Novel high efficiency deterministic polishing method using magnetorheological elastomer. Smart Materials and Structures, 2020, 29, 114008.	1.8	7
15	<i>H</i> _{â^ž} control for a semi-active scissors linkage seat suspension with magnetorheological damper. Journal of Intelligent Material Systems and Structures, 2019, 30, 708-721.	1.4	25
16	Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity. Composites Science and Technology, 2019, 183, 107817.	3.8	55
17	Carbon black reinforced magnetorheological gel enabled high-performance magneto-resistor for motor soft start-up. Smart Materials and Structures, 2019, 28, 125019.	1.8	4
18	Adaptive fuzzy control of a magnetorheological elastomer vibration isolation system with time-varying sinusoidal excitations. Journal of Sound and Vibration, 2019, 456, 386-406.	2.1	74

#	Article	IF	CITATIONS
19	Study on the Effect of Particle Size on Viscoelastic Properties of Magnetorheological Elastomers. Current Smart Materials, 2019, 4, 59-67.	0.5	4
20	Synthesis of absorbing coating based on magnetorheological gel with controllable electromagnetic wave absorption properties. Smart Materials and Structures, 2019, 28, 044001.	1.8	12
21	Transient responses of magnetorheological elastomer and isolator under shear mode. Smart Materials and Structures, 2019, 28, 044002.	1.8	12
22	Dynamic Mechanical Hysteresis of Magnetorheological Elastomers Subjected to the Cyclic Loading and Periodic Magnetic Field. Frontiers in Materials, 2019, 6, .	1.2	11
23	Fabrication and mechanical behaviors of iron–nickel foam reinforced magnetorheological elastomer. Smart Materials and Structures, 2019, 28, 115039.	1.8	8
24	Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. Nanoscale, 2018, 10, 4745-4752.	2.8	73
25	Active/semi-active hybrid isolation system with fuzzy switching controller. Journal of Intelligent Material Systems and Structures, 2018, 29, 101-115.	1.4	10
26	Investigations on response time of magnetorheological elastomer under compression mode. Smart Materials and Structures, 2018, 27, 055017.	1.8	36
27	Rheological properties of dimorphic magnetorheological gels mixed dendritic carbonyl iron powder. Journal of Intelligent Material Systems and Structures, 2018, 29, 12-23.	1.4	24
28	Stress relaxation behavior of magnetorheological elastomer: Experimental and modeling study. Journal of Intelligent Material Systems and Structures, 2018, 29, 205-213.	1.4	39
29	The field-dependent conductivity of dimorphic magnetorheological gel incorporated with iron nanowire. Journal of Intelligent Material Systems and Structures, 2018, 29, 24-31.	1.4	10
30	An EPDM/MVQ polymer blend based magnetorheological elastomer with good thermostability and mechanical performance. Soft Matter, 2018, 14, 8521-8528.	1.2	38
31	Investigation on the effects of doped dendritic Co particles on rheological property of magnetorheological gel. Smart Materials and Structures, 2018, 27, 105041.	1.8	9
32	Genetic algorithm based nonlinear self-tuning fuzzy control for time-varying sinusoidal vibration of a magnetorheological elastomer vibration isolation system. Smart Materials and Structures, 2018, 27, 085010.	1.8	13
33	The damping behavior of magnetorheological gel based on polyurethane matrix. Polymer Composites, 2017, 38, 1248-1258.	2.3	10
34	A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment: design and verification. Smart Materials and Structures, 2017, 26, 047001.	1.8	30
35	Improved rheological properties of dimorphic magnetorheological gels based on flower-like carbonyl iron particles. Applied Surface Science, 2017, 416, 772-780.	3.1	45
36	Synthesis and microwave absorption properties of hierarchical Fe micro-sphere assembly by nano-plates. Journal of Alloys and Compounds, 2017, 721, 449-455.	2.8	29

#	Article	IF	CITATIONS
37	Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Composites Science and Technology, 2017, 139, 36-46.	3.8	94
38	Preparation and high-performance microwave absorption of hierarchical dendrite-like Co superstructures self-assembly of nanoflakes. Nanotechnology, 2017, 28, 485703.	1.3	24
39	Enhanced Microwave Absorption Property of Fe Nanoparticles Encapsulated within Reduced Graphene Oxide with Different Thicknesses. Industrial & Engineering Chemistry Research, 2017, 56, 8872-8879.	1.8	58
40	Time-delay analysis of a magnetorheological elastomer actuator for semi-active control., 2017,,.		4
41	Enhanced field-dependent conductivity of magnetorheological gels with low-doped carbon nanotubes. Smart Materials and Structures, 2017, 26, 105026.	1.8	5
42	Development and Dynamic Characterization of a Mixed Mode Magnetorheological Elastomer Isolator. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	25
43	Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application. Smart Materials and Structures, 2016, 25, 115005.	1.8	27
44	Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers. Smart Materials and Structures, 2016, 25, 085046.	1.8	30
45	NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Materials and Structures, 2016, 25, 125019.	1.8	36
46	Thermal effects on the laminated magnetorheological elastomer isolator. Smart Materials and Structures, 2016, 25, 115039.	1.8	16
47	A theoretical model for the field-dependent conductivity of magneto-rheological gels and experimental verification. Sensors and Actuators A: Physical, 2016, 245, 127-134.	2.0	31
48	Dynamic mechanical properties of magnetorheological elastomers based on polyurethane matrix. Polymer Composites, 2016, 37, 1587-1595.	2.3	44
49	A hybrid magnetorheological elastomer-fluid (MRE-F) isolation mount: development and experimental validation. Smart Materials and Structures, 2016, 25, 015026.	1.8	35
50	Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	28
51	Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation. Smart Materials and Structures, 2016, 25, 035030.	1.8	46
52	A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology. Applied Physics Letters, 2015, 107, 111901.	1.5	31
53	Applications of Magnetorheological Technology to Semiactive Vibration Control Systems. Shock and Vibration, 2015, 2015, 1-2.	0.3	2
54	A laminated magnetorheological elastomer bearing prototype for seismic mitigation of bridge superstructures. Journal of Intelligent Material Systems and Structures, 2015, 26, 1818-1825.	1.4	41

#	Article	IF	CITATION
55	Flower-like carbonyl iron powder modified by nanoflakes: Preparation and microwave absorption properties. Applied Physics Letters, 2015, 106, .	1.5	52
56	miR-375 and miR-30d in the Effect of Chromium-Containing Chinese Medicine Moderating Glucose Metabolism. Journal of Diabetes Research, 2014, 2014, 1-6.	1.0	17
57	Selection Cooperation in Heterogeneous Cooperative Networks. Wireless Personal Communications, 2014, 75, 2089-2102.	1.8	3
58	Magnetoresistance Characteristics of Magnetorheological Gel under a Magnetic Field. Industrial & Lamp; Engineering Chemistry Research, 2014, 53, 4704-4710.	1.8	58
59	A Lightweight Selection Cooperation Protocol with Multiple Available Best Relays. IEEE Communications Letters, 2013, 17, 1172-1175.	2.5	11
60	Magnetic Field-Dependent Normal Force of Magnetorheological Gel. Industrial & Engineering Chemistry Research, 2013, 52, 11583-11589.	1.8	43
61	Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers. Journal of Magnetism and Magnetic Materials, 2012, 324, 2147-2152.	1.0	73
62	Adaptive Sliding Mode Fault-Tolerant Control for Semi-Active Suspension Using Magnetorheological Dampers. Journal of Intelligent Material Systems and Structures, 2011, 22, 1653-1660.	1.4	19
63	Human simulated intelligent control of vehicle suspension system with MR dampers. Journal of Sound and Vibration, 2009, 319, 753-767.	2.1	112
64	Study on MR Semi-active Suspension System and its Road Testing. Journal of Intelligent Material Systems and Structures, 2006, 17, 801-806.	1.4	72
65	HALF CAR MAGNETORHEOLOGICAL SUSPENSION SYSTEM ACCOUNTING FOR NONLINEARITY AND TIME DELAY. International Journal of Modern Physics B, 2005, 19, 1381-1387.	1.0	12
66	PID Control for Magnetorheological Elastomer Absorber with Impact Load. Applied Mechanics and Materials, 0, 121-126, 1734-1738.	0.2	3