Sanwen Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485680/publications.pdf

Version: 2024-02-01

20759 15218 21,879 128 60 126 citations h-index g-index papers 136 136 136 15785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	13.7	2,860
2	Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475, 189-195.	13.7	1,912
3	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	9.4	1,893
4	The genome of the cucumber, Cucumis sativus L Nature Genetics, 2009, 41, 1275-1281.	9.4	1,317
5	Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46, 1220-1226.	9.4	801
6	The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 2013, 45, 51-58.	9.4	731
7	Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 2018, 172, 249-261.e12.	13.5	606
8	A chemical genetic roadmap to improved tomato flavor. Science, 2017, 355, 391-394.	6.0	561
9	A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013, 45, 1510-1515.	9.4	472
10	The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51, 1044-1051.	9.4	441
11	An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7766-7771.	3.3	414
12	Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 2018, 50, 796-802.	9.4	401
13	Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346, 1084-1088.	6.0	388
14	Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant Journal, 2005, 42, 251-261.	2.8	355
15	Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, $2010,11,569.$	1.2	316
16	QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theoretical and Applied Genetics, 2014, 127, 1491-1499.	1.8	267
17	Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating the Potato Genome with Genetic and Physical Maps. G3: Genes, Genomes, Genetics, 2013, 3, 2031-2047.	0.8	244
18	Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genetics, 2014, 10, e1004078.	1.5	238

#	Article	IF	CITATIONS
19	Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics, 2011, 12, 471.	1.2	236
20	An Integrated Genetic and Cytogenetic Map of the Cucumber Genome. PLoS ONE, 2009, 4, e5795.	1.1	232
21	RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics, 2011, 12, 540.	1.2	232
22	Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics, 2019, 51, 1616-1623.	9.4	226
23	The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 2018, 6, 211.	4.9	204
24	Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nature Plants, 2016, 2, 16183.	4.7	188
25	A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48, 109-111.	9.4	184
26	Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 2019, 47, D1128-D1136.	6.5	177
27	Domestication selected for deceleration of the circadian clock in cultivated tomato. Nature Genetics, 2016, 48, 89-93.	9.4	165
28	Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 2010, 11, 384.	1.2	161
29	Engineering Non-transgenic Gynoecious Cucumber Using an Improved Transformation Protocol and Optimized CRISPR/Cas9 System. Molecular Plant, 2017, 10, 1575-1578.	3.9	159
30	Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 2017, 8, 15275.	5.8	156
31	A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 2019, 51, 1607-1615.	9.4	153
32	Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 2018, 4, 651-654.	4.7	152
33	Molecular Isolation of the $\langle i \rangle M \langle i \rangle$ Gene Suggests That a Conserved-Residue Conversion Induces the Formation of Bisexual Flowers in Cucumber Plants. Genetics, 2009, 182, 1381-1385.	1.2	139
34	A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience, 2019, 8, .	3.3	138
35	Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 2020, 52, 1018-1023.	9.4	134
36	Graph pangenome captures missing heritability and empowers tomato breeding. Nature, 2022, 606, 527-534.	13.7	131

3

#	Article	IF	CITATIONS
37	CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiology and Biochemistry, 2016, 108, 478-487.	2.8	126
38	Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber. Plant Cell, 2015, 27, 1595-1604.	3.1	125
39	Genome evolution and diversity of wild and cultivated potatoes. Nature, 2022, 606, 535-541.	13.7	125
40	Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.). PLoS ONE, 2012, 7, e46919.	1.1	123
41	The R3 Resistance to Phytophthora infestans in Potato is Conferred by Two Closely Linked R Genes with Distinct Specificities. Molecular Plant-Microbe Interactions, 2004, 17, 428-435.	1.4	121
42	The Genome of Medicinal Plant Macleaya cordata Provides New Insights into Benzylisoquinoline Alkaloids Metabolism. Molecular Plant, 2017, 10, 975-989.	3.9	116
43	Cloning and Characterization of <i>R3b </i> ; Members of the <i <="" i="" r3=""> Superfamily of Late Blight Resistance Genes Show Sequence and Functional Divergence. Molecular Plant-Microbe Interactions, 2011, 24, 1132-1142.</i>	1.4	113
44	Loss of salt tolerance during tomato domestication conferred by variation in a Na ⁺ /K ⁺ transporter. EMBO Journal, 2020, 39, e103256.	3.5	112
45	Genome design of hybrid potato. Cell, 2021, 184, 3873-3883.e12.	13.5	112
46	The genetic basis of inbreeding depression in potato. Nature Genetics, 2019, 51, 374-378.	9.4	110
47	An ACC Oxidase Gene Essential for Cucumber Carpel Development. Molecular Plant, 2016, 9, 1315-1327.	3.9	108
48	The Taxus genome provides insights into paclitaxel biosynthesis. Nature Plants, 2021, 7, 1026-1036.	4.7	103
49	Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (<i>Cucumis sativus</i>). Plant Physiology, 2016, 172, 603-618.	2.3	99
50	The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications, 2019, 10, 5158.	5.8	94
51	A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 2011, 182, 167-176.	0.6	91
52	Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications, 2019, 10, 1534.	5.8	91
53	Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14937-14941.	3.3	90
54	Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis. National Science Review, 2018, 5, 78-87.	4.6	90

#	Article	IF	CITATIONS
55	An Overlooked Paleotetraploidization in Cucurbitaceae. Molecular Biology and Evolution, 2018, 35, 16-26.	3.5	89
56	Sequencing the Potato Genome: Outline and First Results to Come from the Elucidation of the Sequence of the World's Third Most Important Food Crop. American Journal of Potato Research, 2009, 86, 417-429.	0.5	87
57	Genetic Regulation of Ethylene Dosage for Cucumber Fruit Elongation. Plant Cell, 2019, 31, 1063-1076.	3.1	85
58	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	1.6	73
59	Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications, 2022, 13, 572.	5.8	70
60	QTL analysis of fertility restoration in cytoplasmic male sterile pepper. Theoretical and Applied Genetics, 2004, 109, 1058-1063.	1.8	69
61	Distribution of the tandem repeat sequences and karyotyping in cucumber (<i>Cucumis sativus) Tj ETQq1</i>	1 0,78431	.4 rgBT /Over
62	Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metabolic Engineering, 2021, 68, 152-161.	3.6	63
63	Domestication of Crop Metabolomes: Desired and Unintended Consequences. Trends in Plant Science, 2021, 26, 650-661.	4.3	60
64	Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. Journal of Experimental Botany, 2013, 64, 4541-4557.	2.4	59
65	Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 2022, 13, 682.	5.8	59
66	A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biology, 2013, 13, 53.	1.6	58
67	A Rare SNP Identified a TCP Transcription Factor Essential for Tendril Development in Cucumber. Molecular Plant, 2015, 8, 1795-1808.	3.9	58
68	Changing Ploidy as a Strategy: The Irish Potato Famine Pathogen Shifts Ploidy in Relation to Its Sexuality. Molecular Plant-Microbe Interactions, 2017, 30, 45-52.	1.4	58
69	Transcriptome Comparison of Global Distinctive Features Between Pollination and Parthenocarpic Fruit Set Reveals Transcriptional Phytohormone Cross-Talk in Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 2014, 55, 1325-1342.	1.5	54
70	An <i>ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5</i> gene mutation confers light green peel in cucumber. Journal of Integrative Plant Biology, 2015, 57, 936-942.	4.1	53
71	Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Theoretical and Applied Genetics, 2013, 126, 2643-2653.	1.8	52
72	Multiâ€omics dataâ€driven investigations of metabolic diversity of plant triterpenoids. Plant Journal, 2019, 97, 101-111.	2.8	50

#	Article	IF	Citations
73	A CsYcf54 variant conferring light green coloration in cucumber. Euphytica, 2016, 208, 509-517.	0.6	47
74	Genome-wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. Plant Physiology, 2020, 182, 167-184.	2.3	47
75	The integrated genomics of crop domestication and breeding. Cell, 2022, 185, 2828-2839.	13.5	47
76	<i>In vivo</i> maternal haploid induction in tomato. Plant Biotechnology Journal, 2022, 20, 250-252.	4.1	44
77	Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theoretical and Applied Genetics, 2011, 122, 795-803.	1.8	43
78	Natural variations in <i>SISOS1</i> contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnology Journal, 2021, 19, 20-22.	4.1	43
79	A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nature Communications, 2021, 12, 4142.	5.8	42
80	Genetic association of ETHYLENE-INSENSITIVE3-like sequence with the sex-determining M locus in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2008, 117, 927-933.	1.8	39
81	Localization of a New Gene for Bitterness in Cucumber. Journal of Heredity, 2013, 104, 134-139.	1.0	37
82	Next-Gen Approaches to Flavor-Related Metabolism. Annual Review of Plant Biology, 2019, 70, 187-212.	8.6	36
83	Targeted creation of new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants. Horticulture Research, 2022, 9, .	2.9	36
84	Development of pepper SSR markers from sequence databases. Euphytica, 2001, 117, 163-167.	0.6	34
85	CsAP3: A Cucumber Homolog to Arabidopsis APETALA3 with Novel Characteristics. Frontiers in Plant Science, 2016, 07, 1181.	1.7	34
86	A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics, 2013, 14, 461.	1.2	33
87	Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nature Plants, 2020, 6, 809-822.	4.7	33
88	Genome architecture and tetrasomic inheritance of autotetraploid potato. Molecular Plant, 2022, 15, 1211-1226.	3.9	33
89	Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene <i>ACS1G</i> induces female flower development in cucumber gynoecy. Plant Cell, 2021, 33, 306-321.	3.1	31
90	Genetic Mapping of the Scab Resistance Gene in Cucumber. Journal of the American Society for Horticultural Science, 2010, 135, 53-58.	0.5	31

#	Article	IF	CITATIONS
91	An Accurate In Vitro Assay for High-Throughput Disease Testing of Phytophthora infestans in Potato. Plant Disease, 2005, 89, 1263-1267.	0.7	30
92	Acquisition of deleterious mutations during potato polyploidization. Journal of Integrative Plant Biology, 2019, 61, 7-11.	4.1	30
93	Metabolomics should be deployed in the identification and characterization of geneâ€edited crops. Plant Journal, 2020, 102, 897-902.	2.8	30
94	<i>FLOWERING LOCUS T</i> Improves Cucumber Adaptation to Higher Latitudes. Plant Physiology, 2020, 182, 908-918.	2.3	30
95	Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Research, 2021, 31, 592-606.	2.4	30
96	Engineering Plant Cytochrome P450s for Enhanced Synthesis of Natural Products: Past Achievements and Future Perspectives. Plant Communications, 2020, 1, 100012.	3.6	29
97	Genetic dissection of climacteric fruit ripening in a melon population segregating for ripening behavior. Horticulture Research, 2020, 7, 187.	2.9	29
98	Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. Journal of Genetics and Genomics, 2011, 38, 39-45.	1.7	28
99	A Sequencing-Based Linkage Map of Cucumber. Molecular Plant, 2015, 8, 961-963.	3.9	28
100	A Truncated F-Box Protein Confers the Dwarfism in Cucumber. Journal of Genetics and Genomics, 2016, 43, 223-226.	1.7	27
101	The genomic architecture of the sexâ€determining region and sexâ€related metabolic variation in <i>Ginkgobiloba</i>	2.8	26
102	Integration of High-Resolution Physical and Genetic Map Reveals Differential Recombination Frequency between Chromosomes and the Genome Assembling Quality in Cucumber. PLoS ONE, 2013, 8, e62676.	1.1	26
103	An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2. BMC Genetics, 2011, 12, 18.	2.7	25
104	Wholeâ€Genome Sequence of Synthesized Allopolyploids in <i>Cucumis</i> Reveals Insights into the Genome Evolution of Allopolyploidization. Advanced Science, 2021, 8, 2004222.	5.6	24
105	An Extended Intervarietal Microsatellite Linkage Map of Cucumber, Cucumis sativus L Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 882-886.	0.5	24
106	The multiâ€omics basis of potato heterosis. Journal of Integrative Plant Biology, 2022, 64, 671-687.	4.1	22
107	SSR Analysis of Genetic Diversity Among 192 Diploid Potato Cultivars. Horticultural Plant Journal, 2016, 2, 163-171.	2.3	19
108	A High-Density EST-SSR-Based Genetic Map and QTL Analysis of Dwarf Trait in Cucurbita pepo L International Journal of Molecular Sciences, 2018, 19, 3140.	1.8	19

#	Article	IF	CITATIONS
109	A structural and data-driven approach to engineering a plant cytochrome P450 enzyme. Science China Life Sciences, 2019, 62, 873-882.	2.3	18
110	Domestication and breeding changed tomato fruit transcriptome. Journal of Integrative Agriculture, 2020, 19, 120-132.	1.7	18
111	Chromosome-scale genome assembly of (i) Cucumis hystrix (i) $\hat{a} \in \hat{a}$ wild species interspecifically cross-compatible with cultivated cucumber. Horticulture Research, 2021, 8, 40.	2.9	18
112	An exon skipping in a <i>SEPALLATAâ€Like</i> gene is associated with perturbed floral and fruits development in cucumber. Journal of Integrative Plant Biology, 2016, 58, 766-771.	4.1	17
113	A major quantitative trait locus conferring subgynoecy in cucumber. Theoretical and Applied Genetics, 2016, 129, 97-104.	1.8	17
114	An EMS mutant library for cucumber. Journal of Integrative Agriculture, 2018, 17, 1612-1619.	1.7	17
115	Developmentally Regulated Glucosylation ofÂBitterÂTriterpenoid in Cucumber by the UDP-Glucosyltransferase UGT73AM3. Molecular Plant, 2017, 10, 1000-1003.	3.9	16
116	Title is missing!. Euphytica, 2000, 112, 267-273.	0.6	14
117	New insights into substrate folding preference of plant OSCs. Science Bulletin, 2016, 61, 1407-1412.	4.3	14
118	Genetic analysis and identification of a candidate gene associated with in vitro regeneration ability of cucumber. Theoretical and Applied Genetics, 2018, 131, 2663-2675.	1.8	11
119	Deletion of a cyclin-dependent protein kinase inhibitor, CsSMR1, leads to dwarf and determinate growth in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2022, 135, 915-927.	1.8	10
120	Inducible Positive Mutant Screening System to Unveil the Signaling Pathway of Late Blight Resistance. Journal of Integrative Plant Biology, 2010, 52, 476-484.	4.1	9
121	The potato <i>R10</i> resistance specificity to late blight is conferred by both a single dominant <i><scp>R</scp></i> gene and quantitative trait loci. Plant Breeding, 2013, 132, 407-412.	1.0	7
122	Mutation in a novel gene <i>SMALL AND CORDATE LEAF $1 < i$ affects leaf morphology in cucumber. Journal of Integrative Plant Biology, 2017, 59, 736-741.</i>	4.1	7
123	The mutation of a PECTATE LYASE-LIKE gene is responsible for the Yellow Margin phenotype in potato. Theoretical and Applied Genetics, 2020, 133, 1123-1131.	1.8	7
124	A highâ€throughput BAC end analysis protocol (<scp>BAC</scp> â€anchor) for profiling genome assembly and physical mapping. Plant Biotechnology Journal, 2020, 18, 364-372.	4.1	6
125	Enhanced chemoselectivity of a plant cytochrome P450 through protein engineering of surface and catalytic residues. ABIOTECH, 2021, 2, 215-225.	1.8	4
126	LATEST ADVANCES IN WATERMELON GENOMICS. Acta Horticulturae, 2010, , 599-606.	0.1	1

#	Article	IF	CITATIONS
127	ALLELIC DIVERSITY OF THE POPULATION OF PHYTOPHTHORA INFESTANS IN CHINA. Acta Horticulturae, 2009, , 123-128.	0.1	0
128	Cucumber Genomics. , 2011, , 335-352.		0