
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of brain serotonin deficiency on breathing during sleep is magnified by age. FASEB Journal, 2022, 36, .	0.2	0
2	The effect of brain serotonin deficiency on breathing is magnified by age. Physiological Reports, 2022, 10, e15245.	0.7	7
3	Responses to chronic corticosterone on brain glucocorticoid receptors, adrenal gland, and gut microbiota in mice lacking neuronal serotonin. Brain Research, 2021, 1751, 147190.	1.1	8
4	Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacological Reviews, 2021, 73, 571-596.	7.1	28
5	Effects of a novel tamoxifenâ€analogue (6c) on methamphetamine induced neurotoxicity. FASEB Journal, 2021, 35, .	0.2	Ο
6	Effects of gut microbiota remodeling on the dysbiosis induced by high fat diet in a mouse model of Gulf war illness. Life Sciences, 2021, 279, 119675.	2.0	5
7	Abuse potential and toxicity of the synthetic cathinones (i.e., "Bath saltsâ€). Neuroscience and Biobehavioral Reviews, 2020, 110, 150-173.	2.9	76
8	Tryptophan hydroxylase and serotonin synthesis regulation. Handbook of Behavioral Neuroscience, 2020, , 239-256.	0.7	8
9	Repetitive, mild traumatic brain injury results in a progressive white matter pathology, cognitive deterioration, and a transient gut microbiota dysbiosis. Scientific Reports, 2020, 10, 8949.	1.6	36
10	Effects of a high fat diet on gut microbiome dysbiosis in a mouse model of Gulf War Illness. Scientific Reports, 2020, 10, 9529.	1.6	20
11	Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS ONE, 2020, 15, e0227774.	1.1	30
12	Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology, 2019, 236, 1097-1106.	1.5	5
13	Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2019, 189, 213-222.	0.7	11
14	Assessing the role of dopamine in the differential neurotoxicity patterns of methamphetamine, mephedrone, methcathinone and 4-methylmethamphetamine. Neuropharmacology, 2018, 134, 46-56.	2.0	23
15	Dissecting the Influence of Two Structural Substituents on the Differential Neurotoxic Effects of Acute Methamphetamine and Mephedrone Treatment on Dopamine Nerve Endings with the Use of 4-Methylmethamphetamine and Methcathinone. Journal of Pharmacology and Experimental Therapeutics. 2017. 360. 417-423.	1.3	18
16	Intermittent hypoxia promotes recovery of respiratory motor function in spinal cord-injured mice depleted of serotonin in the central nervous system. Journal of Applied Physiology, 2016, 121, 545-557.	1.2	16
17	Mephedrone. , 2016, , 25-35.		0
18	Prolonged Repetitive Head Trauma Induces a Singular Chronic Traumatic Encephalopathy–Like Pathology in White Matter Despite Transient Behavioral Abnormalities. American Journal of Pathology, 2016, 186, 2869-2886.	1.9	26

#	Article	IF	CITATIONS
19	Neurotoxicology of Synthetic Cathinone Analogs. Current Topics in Behavioral Neurosciences, 2016, 32, 209-230.	0.8	47
20	Cocaineâ€induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganeseâ€enhanced MRI. NMR in Biomedicine, 2015, 28, 1480-1488.	1.6	22
21	Brain Serotonin Signaling Does Not Determine Sexual Preference in Male Mice. PLoS ONE, 2015, 10, e0118603.	1.1	14
22	3,4â€Methylenedioxypyrovalerone prevents while methylone enhances methamphetamineâ€induced damage to dopamine nerve endings: βâ€ketoamphetamine modulation of neurotoxicityÂby the dopamine transporter. Journal of Neurochemistry, 2015, 133, 211-222.	2.1	39
23	The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R10-R17.	0.9	25
24	Neuronal serotonin in the regulation of maternal behavior in rodents. Neurotransmitter (Houston,) Tj ETQqO 0 0	rgBT/Ove 1.2	rlogk 10 Tf 50
25	Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sciences, 2014, 97, 31-36.	2.0	37
26	Animal models of sportsâ€related head injury: bridging the gap between preâ€clinical research and clinical reslity. Journal of Neurochemistry, 2014, 129, 916-931.	2.1	48
27	Mice Genetically Depleted of Brain Serotonin Do Not Display a Depression-like Behavioral Phenotype. ACS Chemical Neuroscience, 2014, 5, 908-919.	1.7	49
28	Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. Journal of Neurochemistry, 2013, 125, 102-110.	2.1	65
29	Marble Burying and Nestlet Shredding as Tests of Repetitive, Compulsive-like Behaviors in Mice. Journal of Visualized Experiments, 2013, , 50978.	0.2	206
30	Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. Journal of Neurochemistry, 2012, 121, 974-984.	2.1	115
31	Altered gene expression in cultured microglia in response to simulated blast overpressure: Possible role of pulse duration. Neuroscience Letters, 2012, 522, 47-51.	1.0	17
32	Mice Genetically Depleted of Brain Serotonin Display Social Impairments, Communication Deficits and Repetitive Behaviors: Possible Relevance to Autism. PLoS ONE, 2012, 7, e48975.	1.1	109
33	Mephedrone, an abused psychoactive component of â€ ⁻ bath salts' and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. Journal of Neurochemistry, 2012, 120, 1097-1107.	2.1	87
34	A mouse model of human repetitive mild traumatic brain injury. Journal of Neuroscience Methods, 2012, 203, 41-49.	1.3	243
35	Ventilatory longâ€ŧerm facilitation is altered in tryptophan hydroxylase 2 knock out mice. FASEB Journal, 2012, 26, 704.5.	0.2	0
36	Tryptophan hydroxylase 2 aggregates through disulfide cross-linking upon oxidation: possible link to serotonin deficits and non-motor symptoms in Parkinson's disease. Journal of Neurochemistry, 2011, 116, 426-437.	2.1	26

#	Article	IF	CITATIONS
37	Potential mechanisms underlying anxiety and depression in Parkinson's disease: Consequences of l-DOPA treatment. Neuroscience and Biobehavioral Reviews, 2011, 35, 556-564.	2.9	109
38	Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity. ILAR Journal, 2011, 52, 352-365.	1.8	15
39	The role of endogenous serotonin in methamphetamineâ€induced neurotoxicity to dopamine nerve endings of the striatum. Journal of Neurochemistry, 2010, 115, 595-605.	2.1	48
40	MDMA administration decreases serotonin but not N-acetylaspartate in the rat brain. NeuroToxicology, 2010, 31, 654-661.	1.4	23
41	Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity. Journal of Neurochemistry, 2009, 109, 1745-1755.	2.1	40
42	Dopamine Disposition in the Presynaptic Process Regulates the Severity of Methamphetamineâ€Induced Neurotoxicity. Annals of the New York Academy of Sciences, 2008, 1139, 118-126.	1.8	32
43	The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. Journal of Neurochemistry, 2008, 105, 605-616.	2.1	107
44	Methamphetamineâ€induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling. Journal of Neurochemistry, 2008, 106, 696-705.	2.1	40
45	Phosphorylation and activation of tryptophan hydroxylase 2: identification of serineâ€19 as the substrate site for calcium, calmodulinâ€dependent protein kinase II. Journal of Neurochemistry, 2007, 103, 1567-1573.	2.1	27
46	Mouse tryptophan hydroxylase isoform 2 and the role of proline 447 in enzyme function. Journal of Neurochemistry, 2006, 96, 758-765.	2.1	32
47	Dopamine Quinones Activate Microglia and Induce a Neurotoxic Gene Expression Profile: Relationship to Methamphetamine-Induced Nerve Ending Damage. Annals of the New York Academy of Sciences, 2006, 1074, 31-41.	1.8	97
48	Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Research, 2006, 1085, 11-18.	1.1	124
49	Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB Journal, 2006, 20, 515-517.	0.2	66
50	Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. Journal of Neurochemistry, 2005, 92, 790-797.	2.1	83
51	MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Research, 2005, 1050, 190-198.	1.1	118
52	Cyclooxygenase-2 Is an Obligatory Factor in Methamphetamine-Induced Neurotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 870-876.	1.3	54
53	S-Thiolation of Tyrosine Hydroxylase by Reactive Nitrogen Species in the Presence of Cysteine or Glutathione. Antioxidants and Redox Signaling, 2005, 7, 863-869.	2.5	29
54	Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment – an oligonucleotide microarray approach. Journal of Neurochemistry, 2004, 88, 380-393.	2.1	84

#	Article	IF	CITATIONS
55	Methamphetamine Neurotoxicity in Dopamine Nerve Endings of the Striatum Is Associated with Microglial Activation. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1-7.	1.3	285
56	Nitrotyrosine as a marker for peroxynitrite-induced neurotoxicity: the beginning or the end of the end of the end of dopamine neurons?. Journal of Neurochemistry, 2004, 89, 529-536.	2.1	67
57	Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neuroscience Letters, 2004, 367, 349-354.	1.0	175
58	Mass Mapping Sites of Nitration in Tyrosine Hydroxylase:Â Random vs Selective Nitration of Three Tyrosine Residues. Chemical Research in Toxicology, 2003, 16, 536-540.	1.7	9
59	Dopamine Prevents Nitration of Tyrosine Hydroxylase by Peroxynitrite and Nitrogen Dioxide. Journal of Biological Chemistry, 2003, 278, 28736-28742.	1.6	25
60	Tetrahydrobiopterin Prevents Nitration of Tyrosine Hydroxylase by Peroxynitrite and Nitrogen Dioxide. Molecular Pharmacology, 2003, 64, 946-953.	1.0	25
61	Dopamine Biosynthesis Is Regulated byS-Glutathionylation. Journal of Biological Chemistry, 2002, 277, 48295-48302.	1.6	91
62	Peroxynitrite-induced Nitration of Tyrosine Hydroxylase. Journal of Biological Chemistry, 2002, 277, 14336-14342.	1.6	44
63	Peroxynitrite Inactivates the Human Dopamine Transporter by Modification of Cysteine 342: Potential Mechanism of Neurotoxicity in Dopamine Neurons. Journal of Neuroscience, 2002, 22, 4399-4405.	1.7	94
64	Reduced nicotinamide nucleotides prevent nitration of tyrosine hydroxylase by peroxynitrite. Brain Research, 2002, 933, 85-89.	1.1	15
65	Tryptophan Hydroxylase: Cloning and Expression of the Rat Brain Enzyme in Mammalian Cells. Journal of Neurochemistry, 2002, 67, 900-906.	2.1	21
66	Regulation of Tyrosine Hydroxylase by S-Glutatiolation: Relevance to Conditions Associated with Dopamine Neuronal Damage. , 2002, , 61-65.		0
67	Tyrosine Hydroxylase Is Inactivated by Catechol-Quinones and Converted to a Redox-Cycling Quinoprotein. Journal of Neurochemistry, 2001, 73, 1309-1317.	2.1	165
68	Molecular Footprints of Neurotoxic Amphetamine Action. Annals of the New York Academy of Sciences, 2000, 914, 92-103.	1.8	32
69	Peroxynitrite Inactivation of Tyrosine Hydroxylase: Mediation by Sulfhydryl Oxidation, not Tyrosine Nitration. Journal of Neuroscience, 1999, 19, 10289-10294.	1.7	102
70	l-DOPA-quinone inactivates tryptophan hydroxylase and converts the enzyme to a redox-cycling quinoprotein. Molecular Brain Research, 1999, 73, 78-84.	2.5	40
71	Peroxynitrite Inactivates Tryptophan Hydroxylase via Sulfhydryl Oxidation. Journal of Biological Chemistry, 1999, 274, 29726-29732.	1.6	66
72	Tryptophan Hydroxylase Regulation Drug-Induced Modifications that Alter Serotonin Neuronal Function. Advances in Experimental Medicine and Biology, 1999, 467, 19-27.	0.8	8

#	Article	IF	CITATIONS
73	Dopamine Inactivates Tryptophan Hydroxylase and Forms a Redox-Cycling Quinoprotein: Possible Endogenous Toxin to Serotonin Neurons. Journal of Neuroscience, 1998, 18, 7111-7117.	1.7	85
74	Molecular Mechanism of the Inactivation of Tryptophan Hydroxylase by Nitric Oxide: Attack on Critical Sulfhydryls that Spare the Enzyme Iron Center. Journal of Neuroscience, 1997, 17, 7245-7251.	1.7	57
75	Tetrahydrobiopterin as a Mediator of PC12 Cell Prolifeiation Induced by EGF and NGF. European Journal of Neuroscience, 1997, 9, 1831-1837.	1.2	37
76	Inactivation of Tryptophan Hydroxylase by Nitric Oxide: Enhancement by Tetrahydrobiopterin. Journal of Neurochemistry, 1997, 68, 1495-1502.	2.1	28
77	Phosphorylation and Activation of Brain Tryptophan Hydroxylase: Identification of Serineâ€58 as a Substrate Site for Protein Kinase A. Journal of Neurochemistry, 1997, 68, 2220-2223.	2.1	42
78	Phosphorylation and Activation of Tryptophan Hydroxylase by Exogenous Protein Kinase A. Journal of Neurochemistry, 1996, 66, 817-823.	2.1	43
79	Expression and Deletion Mutagenesis of Tryptophan Hydroxylase Fusion Proteins: Delineation of the Enzyme Catalytic Core. Journal of Neurochemistry, 1996, 67, 917-926.	2.1	37
80	Inactivation of Brain Tryptophan Hydroxylase by Nitric Oxide. Journal of Neurochemistry, 1996, 67, 1072-1077.	2.1	57
81	Tryptophan Hydroxylase Is Phosphorylated by Protein Kinase A. Journal of Neurochemistry, 1995, 65, 882-888.	2.1	39
82	Mitogenic Effects of Tetrahydrobiopterin : Involvement of Catecholamine and Nitric Oxide Synthesis. Pteridines, 1995, 6, 132-134.	0.5	1
83	Inhibition of tryptophan hydroxylase by benserazide and other catechols. Biochemical Pharmacology, 1991, 41, 625-628.	2.0	33
84	Effect of Tetrahydrobiopterin on Serotonin Synthesis, Release, and Metabolism in Superfused Hippocampal Slices. Journal of Neurochemistry, 1991, 57, 1191-1197.	2.1	29
85	Tyrosine hydroxylase: purification from PC-12 cells, characterization and production of antibodies. Neurochemistry International, 1987, 11, 463-475.	1.9	36
86	Uptake and Release of Tryptophan and Serotonin: An HPLC Method to Study the Flux of Endogenous 5-Hydroxyindoles Through Synaptosomes. Journal of Neurochemistry, 1986, 46, 61-67.	2.1	49
87	Is Ca2+-Calmodulin-Dependent Protein Phosphorylation in Rat Brain Modulated by Carboxylmethylation?. Journal of Neurochemistry, 1985, 44, 1442-1450.	2.1	13
88	Comparisons of tryptophan hydroxylase from a malignant murine mast cell tumor and rat mesencephalic tegmentum. Archives of Biochemistry and Biophysics, 1980, 199, 355-361.	1.4	41
89	The regional distribution of hydroxylase cofactor in rat brain. Journal of Neurochemistry, 1979, 32, 1575-1578.	2.1	84
90	DETERMINATION OF SOME MOLECULAR PARAMETERS OF TRYPTOPHAN HYDROXYLASE FROM RAT MIDBRAIN AND MURINE MAST CELL. Journal of Neurochemistry, 1979, 33, 15-21.	2.1	31