
Pascale Delangle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Simple Fluorescence Affinity Assay to Decipher Uranylâ€Binding to Native Proteins. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
2	A Simple Fluorescence Affinity Assay to Decipher Uranylâ€Binding to Native Proteins. Angewandte Chemie, 2022, 134, .	1.6	0
3	Lectin recognition and hepatocyte endocytosis of GalNAc-decorated nanostructured lipid carriers. Journal of Drug Targeting, 2021, 29, 99-107.	2.1	9
4	Separation of multiphosphorylated cyclopeptides and their positional isomers by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1177, 122792.	1.2	2
5	A Bioinspired Ni ^{II} Superoxide Dismutase Catalyst Designed on an ATCUN-like Binding Motif. Inorganic Chemistry, 2021, 60, 12772-12780.	1.9	7
6	Tripodal scaffolds with three appended imidazole thiones for Cu(I) chelation and protection from Cu-mediated oxidative stress. Journal of Inorganic Biochemistry, 2021, 222, 111518.	1.5	4
7	Development, formulation, and cellular mechanism of a lipophilic copper chelator for the treatment of Wilson's disease. International Journal of Pharmaceutics, 2021, 609, 121193.	2.6	7
8	Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies. Nanoscale Horizons, 2020, 5, 507-513.	4.1	11
9	Recent advances in uranyl binding in proteins thanks to biomimetic peptides. Journal of Inorganic Biochemistry, 2020, 203, 110936.	1.5	22
10	A liver-targeting Cu(<scp>i</scp>) chelator relocates Cu in hepatocytes and promotes Cu excretion in a murine model of Wilson's disease. Metallomics, 2020, 12, 1000-1008.	1.0	8
11	Thiolate-Capped Silver Nanoparticles: Discerning Direct Grafting from Sulfidation at the Metal–Ligand Interface by Interrogating the Sulfur Atom. Journal of Physical Chemistry C, 2020, 124, 13467-13478.	1.5	18
12	In vitro assessment of cobalt oxide particle dissolution in simulated lung fluids for identification of new decorporating agents. Toxicology in Vitro, 2020, 66, 104863.	1.1	3
13	Uranyl-chelating peptides to help understanding uranium toxicity at a molecular level. BIO Web of Conferences, 2019, 14, 06005.	0.1	1
14	Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity. Inorganic Chemistry, 2019, 58, 12775-12785.	1.9	6
15	Phosphateâ€Rich Biomimetic Peptides Shed Light on Highâ€Affinity Hyperphosphorylated Uranyl Binding Sites in Phosphoproteins. Chemistry - A European Journal, 2019, 25, 8570-8578.	1.7	10
16	Quantification of Surface GalNAc Ligands Decorating Nanostructured Lipid Carriers by UPLC-ELSD. International Journal of Molecular Sciences, 2019, 20, 5669.	1.8	6
17	Mercury Trithiolate Binding (HgS ₃) to a de Novo Designed Cyclic Decapeptide with Three Preoriented Cysteine Side Chains. Inorganic Chemistry, 2018, 57, 2705-2713.	1.9	14
18	A Constrained Tetrapeptide as a Model of Cu(I) Binding Sites Involving Cu ₄ S ₆ Clusters in Proteins. Inorganic Chemistry, 2018, 57, 5723-5731.	1.9	7

PASCALE DELANGLE

#	Article	IF	CITATIONS
19	Oligopeptide models of the metal binding loop of the bacterial copper efflux regulator protein CueR as potential Cu(I) chelators. Inorganica Chimica Acta, 2018, 472, 192-198.	1.2	7
20	Short oligopeptides with three cysteine residues as models of sulphur-rich Cu(<scp>i</scp>)- and Hg(<scp>ii</scp>)-binding sites in proteins. Metallomics, 2018, 10, 1232-1244.	1.0	12
21	Insights into polythiol-assisted AgNP dissolution induced by bio-relevant molecules. Environmental Science: Nano, 2018, 5, 1911-1920.	2.2	18
22	Cyclic Phosphopeptides to Rationalize the Role of Phosphoamino Acids in Uranyl Binding to Biological Targets. Chemistry - A European Journal, 2017, 23, 5281-5290.	1.7	23
23	A Trishistidine Pseudopeptide with Ability to Remove Both Cu ^{î™} and Cu ^{î™Î™} from the Amyloidâ€Î² Peptide and to Stop the Associated ROS Formation. Chemistry - A European Journal, 2017, 23, 17078-17088.	1.7	21
24	ASGPRâ€Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes. ChemBioChem, 2016, 17, 590-594.	1.3	31
25	Mercury Complexes with Tripodal Pseudopeptides Derived from <scp>D</scp> â€Penicillamine Favour a HgS ₃ Coordination. European Journal of Inorganic Chemistry, 2015, 2015, 3674-3680.	1.0	10
26	XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites. Inorganic Chemistry, 2015, 54, 11688-11696.	1.9	31
27	Pseudo-peptides Based on Methyl Cysteine or Methionine Inspired from Mets Motifs Found in the Copper Transporter Ctr1. Inorganic Chemistry, 2015, 54, 2339-2344.	1.9	12
28	Preorganized Peptide Scaffolds as Mimics of Phosphorylated Proteins Binding Sites with a High Affinity for Uranyl. Inorganic Chemistry, 2015, 54, 11557-11562.	1.9	30
29	Engineering Short Peptide Sequences for Uranyl Binding. Chemistry - A European Journal, 2014, 20, 16566-16573.	1.7	48
30	d-Penicillamine Tripodal Derivatives as Efficient Copper(I) Chelators. Inorganic Chemistry, 2014, 53, 5229-5239.	1.9	24
31	Design of intrahepatocyte copper(I) chelators as drug candidates for Wilson's disease. Annals of the New York Academy of Sciences, 2014, 1315, 30-36.	1.8	19
32	X-ray Absorption Spectroscopy Proves the Trigonal-Planar Sulfur-Only Coordination of Copper(I) with High-Affinity Tripodal Pseudopeptides. Inorganic Chemistry, 2013, 52, 9954-9961.	1.9	32
33	Rational design of lanthanide binding peptides. Comptes Rendus Chimie, 2013, 16, 515-523.	0.2	16
34	DNA Sensing by a Eu-Binding Peptide Containing a Proflavine Unit. Inorganic Chemistry, 2013, 52, 552-554.	1.9	13
35	Lanthanide-binding peptides with two pendant aminodiacetate arms: Impact of the sequence on chelation. Dalton Transactions, 2012, 41, 3239.	1.6	9
36	Femtomolar Ln(III) Affinity in Peptide-Based Ligands Containing Unnatural Chelating Amino Acids. Inorganic Chemistry, 2012, 51, 5458-5464.	1.9	18

PASCALE DELANGLE

#	Article	IF	CITATIONS
37	Chelation therapy in Wilson's disease: from d-penicillamine to the design of selective bioinspired intracellular Cu(i) chelators. Dalton Transactions, 2012, 41, 6359.	1.6	121
38	Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation. PLoS ONE, 2012, 7, e41922.	1.1	59
39	Mercuryâ€Sequestering Pseudopeptides with a Tris(cysteine) Environment in Water. European Journal of Inorganic Chemistry, 2012, 2012, 3835-3843.	1.0	26
40	A Sulfur Tripod Glycoconjugate that Releases a Highâ€Affinity Copper Chelator in Hepatocytes. Angewandte Chemie - International Edition, 2012, 51, 7445-7448.	7.2	46
41	Hepatocyte Targeting and Intracellular Copper Chelation by a Thiol-Containing Glycocyclopeptide. Journal of the American Chemical Society, 2011, 133, 286-296.	6.6	110
42	A Series of Tripodal Cysteine Derivatives as Waterâ€Soluble Chelators that are Highly Selective for Copper(I). Chemistry - A European Journal, 2011, 17, 4418-4428.	1.7	42
43	Water-soluble tetrapodal N,O ligands incorporating soft N-heterocycles for the selective complexation of Am(iii) over Ln(iii). New Journal of Chemistry, 2010, 34, 108-116.	1.4	23
44	Outer-Sphere Investigation of MRI Relaxation Contrast Agents. Example of a Cyclodecapeptide Gadolinium Complex with Second-Sphere Water. Journal of Physical Chemistry B, 2010, 114, 8770-8781.	1.2	47
45	A lanthanide binding peptide with short chelating side-chains: structural impact of the backbone coordination. Dalton Transactions, 2010, 39, 3560.	1.6	12
46	A Gadoliniumâ€Binding Cyclodecapeptide with a Large Highâ€Field Relaxivity Involving Secondâ€Sphere Water. Chemistry - A European Journal, 2009, 15, 7083-7093.	1.7	45
47	Lanthanide(III) Complexes with Two Hexapeptides Incorporating Unnatural Chelating Amino Acids: Secondary Structure and Stability. Chemistry - A European Journal, 2009, 15, 7456-7469.	1.7	24
48	Comparison of Two Tetrapodal N,O Ligands: Impact of the Softness of the Heterocyclic N-Donors Pyridine and Pyrazine on the Selectivity for Am(III) over Eu(III). Inorganic Chemistry, 2009, 48, 246-256.	1.9	40
49	A Cysteine-Based Tripodal Chelator with a High Affinity and Selectivity for Copper(I). Journal of the American Chemical Society, 2009, 131, 6928-6929.	6.6	53
50	Interplay between glutathione, Atx1 and copper: X-ray absorption spectroscopy determination of Cu(I) environment in an Atx1 dimer. Journal of Biological Inorganic Chemistry, 2008, 13, 1239-1248.	1.1	25
51	A Rigorous Framework To Interpret Water Relaxivity. The Case Study of a Gd(III) Complex with an α-Cyclodextrin Derivative. Journal of the American Chemical Society, 2008, 130, 10401-10413.	6.6	36
52	Relating Structural and Thermodynamic Effects of the Pb(II) Lone Pair:  A New Picolinate Ligand Designed to Accommodate the Pb(II) Lone Pair Leads to High Stability and Selectivity. Inorganic Chemistry, 2007, 46, 3714-3725.	1.9	74
53	Model Peptides Based on the Binding Loop of the Copper Metallochaperone Atx1:Â Selectivity of the Consensus Sequence MxCxxC for Metal Ions Hg(II), Cu(I), Cd(II), Pb(II), and Zn(II). Inorganic Chemistry, 2006, 45, 5510-5520.	1.9	86
54	Novel model peptide for Atx1-like metallochaperones. Chemical Communications, 2004, , 770-771.	2.2	46

PASCALE DELANGLE

#	Article	IF	CITATIONS
55	The Solution Structure of Rhombic Lanthanide Complexes Analyzed with a Model-Free and Crystal-Field Independent Paramagnetic NMR Method:Â Application to Nonaxial Trimetallic Complexes [LnxLu3-x(TACI-3H)2(H2O)6]3+(x= 1â^'3). Inorganic Chemistry, 2004, 43, 1517-1529.	1.9	25
56	Cationic lanthanide complexes of neutral tripodal N,O ligands: enthalpy versus entropy-driven podate formation in water. Dalton Transactions, 2004, , 2012-2018.	1.6	20
57	Is the cytoplasmic loop of MerT, the mercuric ion transport protein, involved in mercury transfer to the mercuric reductase?. FEBS Letters, 2004, 575, 86-90.	1.3	35
58	Solid-State and Solution Properties of Cationic Lanthanide Complexes of a New Neutral Heptadentate N4O3 Tripodal Ligand. Inorganic Chemistry, 2003, 42, 7978-7989.	1.9	13