Christophe Guignabert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6484679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR/Cas9-mediated inactivation of the phosphatase activity of soluble epoxide hydrolase prevents obesity and cardiac ischemic injury. Journal of Advanced Research, 2023, 43, 163-174.	4.4	7
2	Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10. Cardiovascular Research, 2022, 118, 1805-1820.	1.8	26
3	Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension. Chest, 2022, 161, 219-231.	0.4	26
4	Chronic thromboembolic pulmonary hypertension: the magic of pathophysiology. Annals of Cardiothoracic Surgery, 2022, 11, 106-119.	0.6	17
5	Interplay of sex hormones and long-term right ventricular adaptation in a Dutch PAH-cohort. Journal of Heart and Lung Transplantation, 2022, 41, 445-457.	0.3	12
6	Acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, demonstrates efficacy in systemic sclerosis preclinical mouse models. Arthritis Research and Therapy, 2022, 24, 13.	1.6	6
7	Smooth muscle Rac1 contributes to pulmonary hypertension. British Journal of Pharmacology, 2022, 179, 3418-3429.	2.7	8
8	Driving Role of Interleukinâ€2–Related Regulatory <scp>CD4</scp> + T Cell Deficiency in the Development of Lung Fibrosis and Vascular Remodeling in a Mouse Model of Systemic Sclerosis. Arthritis and Rheumatology, 2022, 74, 1387-1398.	2.9	13
9	Plateletâ€Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension. Journal of the American Heart Association, 2022, 11, e023021.	1.6	5
10	New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circulation Research, 2022, 130, 1365-1381.	2.0	20
11	Loss of cAbl Tyrosine Kinase in Pulmonary Arterial Hypertension Causes Dysfunction of Vascular Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	1.4	2
12	Identifying new drugs associated with pulmonary arterial hypertension: A WHO pharmacovigilance database disproportionality analysis. British Journal of Clinical Pharmacology, 2022, 88, 5227-5237.	1.1	7
13	Additive protective effects of sacubitril/valsartan and bosentan on vascular remodelling in experimental pulmonary hypertension. Cardiovascular Research, 2021, 117, 1391-1401.	1.8	23
14	The Thousand Faces of Leptin in the Lung. Chest, 2021, 159, 239-248.	0.4	18
15	Targeting transforming growth factor-Î ² receptors in pulmonary hypertension. European Respiratory Journal, 2021, 57, 2002341.	3.1	67
16	Altered TGFβ/SMAD Signaling in Human and Rat Models of Pulmonary Hypertension: An Old Target Needs Attention. Cells, 2021, 10, 84.	1.8	16
17	The multifaceted problem of pulmonary arterial hypertension in systemic sclerosis. Lancet Rheumatology, The, 2021, 3, e149-e159.	2.2	11
18	Essential role of smooth muscle Rac1 in severe asthma-associated airway remodelling. Thorax, 2021, 76, 326-334.	2.7	13

CHRISTOPHE GUIGNABERT

#	Article	lF	CITATIONS
19	The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nature Reviews Cardiology, 2021, 18, 565-580.	6.1	115
20	An endothelial activin A-bone morphogenetic protein receptor type 2 link is overdriven in pulmonary hypertension. Nature Communications, 2021, 12, 1720.	5.8	30
21	Pulmonary hypertension associated with neurofibromatosis type 2. Pulmonary Circulation, 2021, 11, 1-4.	0.8	0
22	Serum and pulmonary uric acid in pulmonary arterial hypertension. European Respiratory Journal, 2021, 58, 2000332.	3.1	28
23	Screening for pulmonary arterial hypertension in adults carrying a <i>BMPR2</i> mutation. European Respiratory Journal, 2021, 58, 2004229.	3.1	50
24	Chronic thromboembolic pulmonary hypertension: the magic of pathophysiology. Asvide, 2021, 8, 298-298.	0.0	0
25	Role of Connexin 43 increased expression in pulmonary arterial hyperreactivityinduced by the nerve growth factor NGF. , 2021, , .		0
26	Preventing the Increase in Lysophosphatidic Acids: A New Therapeutic Target in Pulmonary Hypertension?. Metabolites, 2021, 11, 784.	1.3	2
27	Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovascular Research, 2020, 116, 686-697.	1.8	54
28	Multiple roles of macrophage migration inhibitory factor in pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1-L9.	1.3	13
29	Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovascular Research, 2020, 116, 885-893.	1.8	70
30	Connexin-43 is a promising target for pulmonary hypertension due to hypoxaemic lung disease. European Respiratory Journal, 2020, 55, 1900169.	3.1	12
31	Purinergic Dysfunction in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2020, 9, e017404.	1.6	16
32	Dendritic Cells in Pulmonary Hypertension: Foot Soldiers or Hidden Enemies?. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 551-552.	1.4	2
33	Pulmonary complications of Bcr-Abl tyrosine kinase inhibitors. European Respiratory Journal, 2020, 56, 2000279.	3.1	28
34	The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient. Cells, 2020, 9, 1422.	1.8	23
35	Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?. European Respiratory Journal, 2020, 56, 2001634.	3.1	284
36	Lineage Tracing Reveals the Dynamic Contribution of Pericytes to the Blood Vessel Remodeling in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 766-782.	1.1	44

#	Article	IF	CITATIONS
37	Lower Plasma Melatonin Levels Predict Worse Long-Term Survival in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2020, 9, 1248.	1.0	8
38	Dysfunction and Restoration of Endothelial Cell Communications in Pulmonary Arterial Hypertension: Therapeutic Implications. , 2020, , 147-155.		0
39	NGF induces pulmonary arterial hyperreactivity through connexin 43 increased expression. , 2020, , .		0
40	Regulation of Type I cytokine receptors as a target for pulmonary arterial hypertension treatment?. , 2020, , .		0
41	Role of c-Abelson in the loss of genome integrity in endothelial cells in pulmonary arterial hypertension. , 2020, , .		0
42	Additive protective effects of sacubitril/valsartan and bosentan on vascular remodeling in experimental pulmonary hypertension. , 2020, , .		0
43	Loss of Bmp9 does not lead to spontaneous pulmonary hypertension, but attenuates vascular remodeling in experimental models. , 2020, , .		0
44	Different tryptophan-kynurenine metabolism profiles in human pulmonary arterial hypertension and animal models of pulmonary hypertension. European Heart Journal, 2020, 41, .	1.0	1
45	Lower plasma melatonin levels predict worse long-term survival in pulmonary arterial hypertension. European Heart Journal, 2020, 41, .	1.0	0
46	Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension. Cardiovascular Research, 2019, 115, 432-439.	1.8	38
47	Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. European Respiratory Journal, 2019, 54, 1802400.	3.1	25
48	PPARÎ ³ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis. Cell Reports, 2019, 26, 1333-1343.e7.	2.9	54
49	Response by Guignabert et al to Letter Regarding Article, "Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension― Circulation Research, 2019, 124, e82-e83.	2.0	2
50	Pulmonary arterial hypertension associated with protein kinase inhibitors: a pharmacovigilance–pharmacodynamic study. European Respiratory Journal, 2019, 53, 1802472.	3.1	37
51	Lysyl oxidase—a possible role in systemic sclerosis–associated pulmonary hypertension: a multicentre study. Rheumatology, 2019, 58, 1547-1555.	0.9	15
52	Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancerâ€like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulmonary Circulation, 2019, 9, 1-15.	0.8	23
53	Functional interaction between PDGFβ and GluN2B-containing NMDA receptors in smooth muscle cell proliferation and migration in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L445-L455.	1.3	12
54	Therapeutic effect of pirfenidone in the sugen/hypoxia rat model of severe pulmonary hypertension. FASEB Journal, 2019, 33, 3670-3679.	0.2	22

#	Article	IF	CITATIONS
55	Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discovery Today, 2019, 24, 428-439.	3.2	74
56	Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension. Circulation Research, 2019, 124, 846-855.	2.0	81
57	Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. European Respiratory Journal, 2019, 53, 1801887.	3.1	776
58	Late Breaking Abstract - Screening of pulmonary arterial hypertension in asymptomatic BMPR2 mutation carriers (DELPHI-2 Study). , 2019, , .		1
59	Design, Synthesis, and Biological Activity of New N-(Phenylmethyl)-benzoxazol-2-thiones as Macrophage Migration Inhibitory Factor (MIF) Antagonists: Efficacies in Experimental Pulmonary Hypertension. Journal of Medicinal Chemistry, 2018, 61, 2725-2736.	2.9	20
60	Precision medicine and personalising therapy in pulmonary hypertension: seeing the light from the dawn of a new era. European Respiratory Review, 2018, 27, 180004.	3.0	21
61	Dasatinib increases endothelial permeability leading to pleural effusion. European Respiratory Journal, 2018, 51, 1701096.	3.1	50
62	Update in Pulmonary Vascular Disease 2016 and 2017. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 13-23.	2.5	6
63	Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. European Respiratory Journal, 2018, 51, 1700745.	3.1	136
64	Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation, 2018, 137, 910-924.	1.6	83
65	Editorial: Molecular Mechanisms in Pulmonary Hypertension and Right Ventricle Dysfunction. Frontiers in Physiology, 2018, 9, 1777.	1.3	1
66	Macrophage Migration Inhibitory Factor (MIF) Inhibition in a Murine Model of Bleomycin-Induced Pulmonary Fibrosis. International Journal of Molecular Sciences, 2018, 19, 4105.	1.8	21
67	Loss-of-Function <i>ABCC8</i> Mutations in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2018, 11, e002087.	1.6	62
68	T-cell costimulation blockade is effective in experimental digestive and lung tissue fibrosis. Arthritis Research and Therapy, 2018, 20, 197.	1.6	40
69	Optimising experimental research in respiratory diseases: an ERS statement. European Respiratory Journal, 2018, 51, 1702133.	3.1	98
70	Association Between BMI and Obesity With Survival in Pulmonary Arterial Hypertension. Chest, 2018, 154, 872-881.	0.4	43
71	ACE2 as therapy for pulmonary arterial hypertension: the good outweighs the bad. European Respiratory Journal, 2018, 51, 1800848.	3.1	34
72	Switching-Off Adora2b in Vascular Smooth Muscle Cells Halts the Development of Pulmonary Hypertension. Frontiers in Physiology, 2018, 9, 555.	1.3	21

#	Article	IF	CITATIONS
73	Pharmacovigilance in a rare disease: example of the VIGIAPATH program in pulmonary arterial hypertension. International Journal of Clinical Pharmacy, 2018, 40, 790-794.	1.0	5
74	Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. Journal of Clinical Investigation, 2018, 128, 1956-1970.	3.9	125
75	Pirfenidone protects against pulmonary hypertension in the Sugen5416/hypoxia rat model. , 2018, , .		1
76	OP0089â€Abatacept is effective in experimental digestive and lung tissue fibrosis. , 2018, , .		0
77	Pathophysiological mechanisms in pulmonary hypertension. , 2018, , 2487-2489.		0
78	Pulmonary vascular remodeling mediated by ADORA2B in pulmonary artery smooth muscle cells. , 2018, , .		0
79	Late Breaking Abstract - MIF inhibition in a murine model of bleomycin-induced lung fibrosis. , 2018, , .		0
80	Renal Denervation Reduces PulmonaryÂVascular Remodeling and Right Ventricular Diastolic Stiffness in Experimental Pulmonary Hypertension. JACC Basic To Translational Science, 2017, 2, 22-35.	1.9	31
81	Response to the article "Sorafenib as a potential strategy for refractory pulmonary arterial hypertension― Pulmonary Pharmacology and Therapeutics, 2017, 45, 11-12.	1.1	3
82	Restoring BMPRII functions in pulmonary arterial hypertension: opportunities, challenges and limitations. Expert Opinion on Therapeutic Targets, 2017, 21, 181-190.	1.5	34
83	Tryptophan hydroxylase 1 Inhibition Impacts Pulmonary Vascular Remodeling in Two Rat Models of Pulmonary Hypertension. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 267-279.	1.3	42
84	Pathology and Pathobiology of Pulmonary Hypertension. Seminars in Respiratory and Critical Care Medicine, 2017, 38, 571-584.	0.8	33
85	Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. European Respiratory Journal, 2017, 50, 1700217.	3.1	89
86	Role of Stromelysin 2 (Matrix Metalloproteinase 10) as a Novel Mediator of Vascular Remodeling Underlying Pulmonary Hypertension Associated With Systemic Sclerosis. Arthritis and Rheumatology, 2017, 69, 2209-2221.	2.9	17
87	Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Annals of the Rheumatic Diseases, 2017, 76, 1931-1940.	0.5	67
88	Translating Research into Improved Patient Care in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 583-595.	2.5	113
89	A genome-wide association analysis identifies PDE1A DNAJC10 locus on chromosome 2 associated with idiopathic pulmonary arterial hypertension in a Japanese population. Oncotarget, 2017, 8, 74917-74926.	0.8	15
90	New targets for pulmonary arterial hypertension. Current Opinion in Pulmonary Medicine, 2017, 23, 377-385.	1.2	16

#	Article	IF	CITATIONS
91	Dasatinib increases endothelial permeability leading to pleural effusion. , 2017, , .		0
92	Neutralization of CXCL12 reverses established pulmonary hypertension in the sugen-hypoxia rat model. , 2017, , .		0
93	Contribution of BMP9 to Pulmonary Arterial Hypertension. , 2017, , .		0
94	Tyrosine kinase inhibitor BIBF1000 does not hamper right ventricular pressure adaptation in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H604-H612.	1.5	13
95	<i>BMPR2</i> mutation status influences bronchial vascular changes in pulmonary arterial hypertension. European Respiratory Journal, 2016, 48, 1668-1681.	3.1	68
96	Deterioration of pulmonary hypertension and pleural effusion with bosutinib following dasatinib lung toxicity. European Respiratory Journal, 2016, 48, 1517-1519.	3.1	44
97	Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1410-1420.	2.5	77
98	Regulatory T Cell Dysfunction in Idiopathic, Heritable and Connective Tissue-Associated Pulmonary Arterial Hypertension. Chest, 2016, 149, 1482-1493.	0.4	63
99	Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. Journal of Clinical Investigation, 2016, 126, 3207-3218.	3.9	208
100	Changes in red blood cell membrane structure in pulmonary arterial hypertension. , 2016, , .		0
101	Uric acid causes excessive pulmonary arterial smooth muscle cell proliferation <i>via</i> URATv1 upregulation in pulmonary arterial hypertension. , 2016, , .		0
102	Role of Nerve Growth Factor in Development and Persistence of Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 342-355.	2.5	30
103	Nasal decongestant exposure in patients with pulmonary arterial hypertension: a pilot study. European Respiratory Journal, 2015, 46, 1211-1214.	3.1	5
104	Endothelin-1 receptor antagonists in fetal development and pulmonary arterial hypertension. Reproductive Toxicology, 2015, 56, 45-51.	1.3	27
105	New Molecular Targets of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Chest, 2015, 147, 529-537.	0.4	140
106	Leptin signalling system as a target for pulmonary arterial hypertension therapy. European Respiratory Journal, 2015, 45, 1066-1080.	3.1	62
107	Proinflammatory Signature of the Dysfunctional Endothelium in Pulmonary Hypertension. Role of the Macrophage Migration Inhibitory Factor/CD74 Complex. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 983-997.	2.5	144
108	Telomere Maintenance Is a Critical Determinant in the Physiopathology of Pulmonary Hypertension. Journal of the American College of Cardiology, 2015, 66, 1942-1943.	1.2	9

#	Article	IF	CITATIONS
109	Clinical Pharmacology of Endothelin Receptor Antagonists Used in the Treatment of Pulmonary Arterial Hypertension. American Journal of Cardiovascular Drugs, 2015, 15, 13-26.	1.0	27
110	Pathophysiology and Treatment of Pulmonary Arterial Hypertension. , 2015, , 949-974.		0
111	Hematopoietic Stem Cells and Chronic Hypoxia-Induced Pulmonary Vascular Remodelling. Pancreatic Islet Biology, 2015, , 241-256.	0.1	0
112	Time-resolved study of endothelial shear-responsiveness in pulmonary arterial hypertension. , 2015, , .		0
113	Endothelial-derived MIF contributes to pulmonary endothelial cell proliferation in human pulmonary arterial hypertension. , 2015, , .		0
114	IL-6 receptor overexpression in pulmonary arterial smooth muscle cells in idiopathic pulmonary hypertension. , 2015, , .		0
115	Increased Pericyte Coverage Mediated by Endothelial-Derived Fibroblast Growth Factor-2 and Interleukin-6 Is a Source of Smooth Muscle–Like Cells in Pulmonary Hypertension. Circulation, 2014, 129, 1586-1597.	1.6	178
116	Pulmonary arterial hypertension in familial hemiplegic migraine with ATP1A2 channelopathy. European Respiratory Journal, 2014, 43, 641-643.	3.1	11
117	Protein Changes Contributing to Right Ventricular Cardiomyocyte Diastolic Dysfunction in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2014, 3, e000716.	1.6	65
118	Expression of TLR9 in tumorâ€infiltrating mononuclear cells enhances angiogenesis and is associated with a worse survival in lung cancer. International Journal of Cancer, 2014, 134, 765-777.	2.3	35
119	Angiomatoid fibrous histiocytoma of the pulmonary artery: a multidisciplinary discussion. Histopathology, 2014, 65, 278-282.	1.6	12
120	Targeted therapies in pulmonary arterial hypertension. , 2014, 141, 172-191.		171
121	Contractile Dysfunction of Left Ventricular Cardiomyocytes in Patients With Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2014, 64, 28-37.	1.2	82
122	Inflammation and Immunity in the Pathogenesis of Pulmonary Arterial Hypertension. Circulation Research, 2014, 115, 165-175.	2.0	708
123	N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respiratory Research, 2014, 15, 65.	1.4	38
124	Immune Dysregulation and Endothelial Dysfunction in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 1332-1340.	1.6	141
125	Reply: The Renin–Angiotensin System in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1139-1140.	2.5	0
126	Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. Journal of the American College of Cardiology, 2013, 62, D4-D12.	1.2	465

CHRISTOPHE GUIGNABERT

#	Article	IF	CITATIONS
127	Genome-wide association analysis identifies a susceptibility locus for pulmonary arterial hypertension. Nature Genetics, 2013, 45, 518-521.	9.4	93
128	Pathogenesis of pulmonary arterial hypertension: lessons from cancer. European Respiratory Review, 2013, 22, 543-551.	3.0	172
129	Pulmonary Alveolar Proteinosis Revealing a Telomerase Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 402-404.	2.5	11
130	Neurohormonal Axis in Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 14-19.	2.5	85
131	Pathology and Pathobiology of Pulmonary Hypertension. Seminars in Respiratory and Critical Care Medicine, 2013, 34, 551-559.	0.8	100
132	Cellular microparticles in the pathogenesis of pulmonary hypertension. European Respiratory Journal, 2013, 42, 272-279.	3.1	51
133	Key roles of Src family tyrosine kinases in the integrity of the pulmonary vascular bed. European Respiratory Journal, 2013, 41, 3-4.	3.1	15
134	Tyrosine Kinase Inhibitors in Pulmonary Arterial Hypertension: A Double-Edge Sword?. Seminars in Respiratory and Critical Care Medicine, 2013, 34, 714-724.	0.8	54
135	Right Ventricular Diastolic Impairment in Patients With Pulmonary Arterial Hypertension. Circulation, 2013, 128, 2016-2025.	1.6	294
136	Therapeutic Efficacy of AAV1.SERCA2a in Monocrotaline-Induced Pulmonary Arterial Hypertension. Circulation, 2013, 128, 512-523.	1.6	97
137	Emerging Molecular Targets for Anti-proliferative Strategies in Pulmonary Arterial Hypertension. Handbook of Experimental Pharmacology, 2013, 218, 409-436.	0.9	6
138	Emerging Molecular Targets for Anti-proliferative Strategies in Pulmonary Arterial Hypertension. Handbook of Experimental Pharmacology, 2013, , 409-436.	0.9	7
139	Copper Dependence of Angioproliferation in Pulmonary Arterial Hypertension in Rats and Humans. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 582-591.	1.4	46
140	A Critical Role for p130 ^{Cas} in the Progression of Pulmonary Hypertension in Humans and Rodents. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 666-676.	2.5	85
141	Dysregulated Renin–Angiotensin–Aldosterone System Contributes to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 780-789.	2.5	309
142	Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension. European Respiratory Journal, 2012, 40, 895-904.	3.1	110
143	The Therapeutic Potential Of The Renin-Angiotensin-Aldosteron System In Idiopathic Pulmonary Arterial Hypertension. , 2012, , .		1
144	Pulmonary Arterial Hypertension in Patients Treated by Dasatinib. Circulation, 2012, 125, 2128-2137.	1.6	548

9

#	Article	IF	CITATIONS
145	Inhibition of Transforming Growth Factor Î ² Worsens Elastin Degradation in a Murine Model of Kawasaki Disease. American Journal of Pathology, 2011, 178, 1210-1220.	1.9	19
146	Autocrine Fibroblast Growth Factor-2 Signaling Contributes to Altered Endothelial Phenotype in Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 311-322.	1.4	125
147	Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22αâ€ŧargeted overexpression of the serotonin transporter. FASEB Journal, 2009, 23, 4135-4147.	0.2	80
148	Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension. European Respiratory Journal, 2009, 34, 1100-1110.	3.1	68
149	RhoA and Rho Kinase Activation in Human Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1151-1158.	2.5	165
150	Tie2-mediated loss of peroxisome proliferator-activated receptor-Î ³ in mice causes PDGF receptor-Î ² -dependent pulmonary arterial muscularization. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1082-L1090.	1.3	136
151	S100A4 and Bone Morphogenetic Protein-2 Codependently Induce Vascular Smooth Muscle Cell Migration via Phospho–Extracellular Signal-Regulated Kinase and Chloride Intracellular Channel 4. Circulation Research, 2009, 105, 639-647.	2.0	80
152	Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. Journal of Clinical Investigation, 2009, 119, 512-523.	3.9	177
153	Developmental expression of LC3α and β: Absence of fibronectin or autophagy phenotype in LC3β knockout mice. Developmental Dynamics, 2008, 237, 187-195.	0.8	93
154	SM22α-targeted deletion of bone morphogenetic protein receptor 1A in mice impairs cardiac and vascular development, and influences organogenesis. Development (Cambridge), 2008, 135, 2981-2991.	1.2	58
155	Pulmonary arterial remodeling induced by a Th2 immune response. Journal of Experimental Medicine, 2008, 205, 361-372.	4.2	234
156	Smooth Muscle Protein 22α–Mediated Patchy Deletion of <i>Bmpr1a</i> Impairs Cardiac Contractility but Protects Against Pulmonary Vascular Remodeling. Circulation Research, 2008, 102, 380-388.	2.0	43
157	Pulmonary arterial remodeling induced by a Th2 immune response. Journal of Cell Biology, 2008, 180, i9-i9.	2.3	1
158	An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension. Journal of Clinical Investigation, 2008, 118, 1846-1857.	3.9	314
159	Dual Role for Plasminogen Activator Inhibitor Type 1 as Soluble and as Matricellular Regulator of Epithelial Alveolar Cell Wound Healing. American Journal of Pathology, 2006, 169, 1624-1632.	1.9	45
160	Vascular-wall remodeling of 3 human bypass vessels: Organ culture and smooth muscle cell properties. Journal of Thoracic and Cardiovascular Surgery, 2006, 131, 651-658.	0.4	25
161	Cross Talk Between Endothelial and Smooth Muscle Cells in Pulmonary Hypertension. Circulation, 2006, 113, 1857-1864.	1.6	257
162	Transgenic Mice Overexpressing the 5-Hydroxytryptamine Transporter Gene in Smooth Muscle Develop Pulmonary Hypertension. Circulation Research, 2006, 98, 1323-1330.	2.0	170

#	Article	IF	CITATIONS
163	Effect of doxycycline on sulfur mustard-induced respiratory lesions in guinea pigs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L67-L74.	1.3	53
164	Serotonin Transporter Inhibition Prevents and Reverses Monocrotaline-Induced Pulmonary Hypertension in Rats. Circulation, 2005, 111, 2812-2819.	1.6	200
165	Recurrence of Pulmonary Emphysema in an α-1 Proteinase Inhibitor-deficient Lung Transplant Recipient. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 811-814.	2.5	31
166	Interplay Between Serotonin Transporter Signaling and Voltage-Gated Potassium Channel (Kv) 1.5 Expression. , 0, , .		0
167	Erythrocytes are altered in pulmonary arterial hypertension. European Respiratory Journal, 0, , 2200506.	3.1	0