
Nathalie Gontard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6484123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. Journal of Food Science, 1992, 57, 190-195.	1.5	776
2	Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Barrier Properties of an Edible Wheat Gluten Film. Journal of Food Science, 1993, 58, 206-211.	1,5	731
3	Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science and Technology, 1994, 29, 39-50.	1.3	442
4	Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science and Technology, 2008, 19, S103-S112.	7.8	389
5	Proteins as Agricultural Polymers for Packaging Production. Cereal Chemistry, 1998, 75, 1-9.	1.1	375
6	Prolongation of the Shelf-life of Perishable Food Products using Biodegradable Films and Coatings. LWT - Food Science and Technology, 1996, 29, 10-17.	2.5	361
7	The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Frontiers in Nutrition, 2018, 5, 121.	1.6	266
8	Selected Functional Properties of Fish Myofibrillar Protein-Based Films As Affected by Hydrophilic Plasticizers. Journal of Agricultural and Food Chemistry, 1997, 45, 622-626.	2.4	263
9	New plasticizers for wheat gluten films. European Polymer Journal, 2001, 37, 1533-1541.	2.6	230
10	A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends in Food Science and Technology, 2017, 62, 91-103.	7.8	210
11	A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology, 2018, 48, 614-654.	6.6	189
12	Recent innovations in edible and/or biodegradable packaging materials. Food Additives and Contaminants, 1997, 14, 741-751.	2.0	169
13	Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere, 2016, 144, 433-439.	4.2	146
14	Functional Properties of Myofibrillar Protein-based Biopackaging as Affected by Film Thickness. Journal of Food Science, 1996, 61, 580-584.	1.5	129
15	A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensors. Sensors, 2016, 16, 1232.	2.1	102
16	Antimicrobial Paper Based on a Soy Protein Isolate or Modified Starch Coating Including Carvacrol and Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 2007, 55, 2155-2162.	2.4	101
17	Absorption kinetics of oxygen and carbon dioxide scavengers as part of active modified atmosphere packaging. Journal of Food Engineering, 2006, 72, 1-7.	2.7	96
18	Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Industrial Crops and Products. 2015. 69. 110-122.	2.5	91

#	Article	IF	CITATIONS
19	Biobased packaging for improving preservation of fresh common mushrooms (Agaricus bisporus L.). Innovative Food Science and Emerging Technologies, 2010, 11, 690-696.	2.7	86
20	Controlling pesticide release via structuring agropolymer and nanoclays based materials. Journal of Hazardous Materials, 2012, 205-206, 32-39.	6.5	83
21	Water vapour permeability of edible bilayer films of wheat gluten and lipids. International Journal of Food Science and Technology, 1995, 30, 49-56.	1.3	82
22	Wheat gluten-coated papers for bio-based food packaging: Structure, surface and transfer properties. Food Research International, 2010, 43, 1395-1401.	2.9	77
23	Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polymer Gels and Networks, 1997, 5, 1-15.	0.6	73
24	Thermoplastic properties of fish myofibrillar proteins: application to biopackaging fabrication. Polymer, 1997, 38, 4071-4078.	1.8	68
25	Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationships. Industrial Crops and Products, 2013, 43, 545-555.	2.5	68
26	Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydrate Polymers, 2016, 149, 40-50.	5.1	62
27	Thermal properties of fish myofibrillar protein-based films as affected by moisture content. Polymer, 1997, 38, 2399-2405.	1.8	61
28	Moisture migration in a cereal composite food at high water activity: Effects of initial porosity and fat content. Journal of Cereal Science, 2006, 43, 144-151.	1.8	60
29	Food preservative content reduction by controlling sorbic acid release from a superficial coating. Innovative Food Science and Emerging Technologies, 2009, 10, 108-115.	2.7	60
30	Functional properties of thermoformed wheat gluten/montmorillonite materials with respect to formulation and processing conditions. Journal of Applied Polymer Science, 2008, 107, 487-496.	1.3	57
31	Effect of passive and active modified atmosphere packaging on quality changes of fresh endives. Postharvest Biology and Technology, 2008, 48, 22-29.	2.9	57
32	Moisture diffusivity and transfer modelling in dry biscuit. Journal of Food Engineering, 2004, 64, 81-87.	2.7	56
33	Vegetal fiberâ€based biocomposites: Which stakes for food packaging applications?. Journal of Applied Polymer Science, 2016, 133, .	1.3	54
34	Coating papers with soy protein isolates as inclusion matrix of carvacrol. Food Research International, 2007, 40, 22-32.	2.9	53
35	Modeling of Active Modified Atmosphere Packaging of Endives Exposed to Several Postharvest Temperatures. Journal of Food Science, 2005, 70, e443.	1.5	52
36	Predicting shelf life gain of fresh strawberries â€~ Charlotte cv' in modified atmosphere packaging. Postharvest Biology and Technology, 2018, 142, 28-38.	2.9	52

#	Article	IF	CITATIONS
37	Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. Innovative Food Science and Emerging Technologies, 2018, 46, 107-121.	2.7	52
38	Effects of Heat Treatment and Pectin Addition onβ-Lactoglobulin Allergenicity. Journal of Agricultural and Food Chemistry, 2006, 54, 5643-5650.	2.4	50
39	Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms' growth in model food during storage. Innovative Food Science and Emerging Technologies, 2011, 12, 426-434.	2.7	47
40	Moisture and Temperature Triggered Release of a Volatile Active Agent from Soy Protein Coated Paper: Effect of Glass Transition Phenomena on Carvacrol Diffusion Coefficient. Journal of Agricultural and Food Chemistry, 2009, 57, 658-665.	2.4	44
41	Understanding external plasticization of melt extruded <scp>PHBV</scp> –wheat straw fibers biodegradable composites for food packaging. Journal of Applied Polymer Science, 2015, 132, .	1.3	44
42	Influence of processing temperature on the water vapour transport properties of wheat gluten based agromaterials. Industrial Crops and Products, 2011, 33, 457-461.	2.5	43
43	Predictive Microbiology Coupled with Gas (O ₂ /CO ₂) Transfer in Food/Packaging Systems: How to Develop an Efficient Decision Support Tool for Food Packaging Dimensioning. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 1-21.	5.9	43
44	Effective moisture diffusivity modelling versus food structure and hygroscopicity. Food Chemistry, 2008, 106, 1428-1437.	4.2	42
45	Rheological Model for the Mechanical Properties of Myofibrillar Protein-Based Films. Journal of Agricultural and Food Chemistry, 1996, 44, 1116-1122.	2.4	40
46	Controlling moisture transport in a cereal porous product by modification of structural or formulation parameters. Food Research International, 2007, 40, 461-469.	2.9	38
47	Retention and Release of Cinnamaldehyde from Wheat Protein Matrices. Biomacromolecules, 2013, 14, 1493-1502.	2.6	38
48	Dry fractionation of olive pomace for the development of food packaging biocomposites. Industrial Crops and Products, 2018, 120, 250-261.	2.5	38
49	How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageing. Journal of Polymers and the Environment, 2018, 26, 2588-2600.	2.4	37
50	On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer. Cellulose, 2015, 22, 535-551.	2.4	36
51	Wheat gluten, a bio-polymer layer to monitor relative humidity in food packaging: Electric and dielectric characterization. Sensors and Actuators A: Physical, 2016, 247, 355-367.	2.0	35
52	Wheat gluten, a bio-polymer to monitor carbon dioxide in food packaging: Electric and dielectric characterization. Sensors and Actuators B: Chemical, 2017, 250, 76-84.	4.0	35
53	Fresh food packaging design: A requirement driven approach applied to strawberries and agro-based materials. Innovative Food Science and Emerging Technologies, 2013, 20, 288-298.	2.7	34
54	Carvacrol losses from soy protein coated papers as a function of drying conditions. Journal of Applied Polymer Science, 2007, 106, 611-620.	1.3	32

#	Article	IF	CITATIONS
55	Poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) films for food packaging: Physical–chemical and structural stability under food contact conditions. Journal of Applied Polymer Science, 2016, 133, .	1.3	32
56	How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Composites. International Journal of Molecular Sciences, 2020, 21, 228.	1.8	32
57	How the biodegradability of wheat gluten-based agromaterial can be modulated by adding nanoclays. Polymer Degradation and Stability, 2011, 96, 2088-2097.	2.7	31
58	Stability of Myofibrillar Protein-Based Biopackagings During Storage. LWT - Food Science and Technology, 1996, 29, 344-348.	2.5	30
59	Consumer behaviour in the prediction of postharvest losses reduction for fresh strawberries packed in modified atmosphere packaging. Postharvest Biology and Technology, 2020, 163, 111119.	2.9	30
60	Active packaging films containing antioxidant extracts from green coffee oil by-products to prevent lipid oxidation. Journal of Food Engineering, 2022, 312, 110744.	2.7	30
61	Dry fractionation of olive pomace as a sustainable process to produce fillers for biocomposites. Powder Technology, 2018, 326, 44-53.	2.1	29
62	Benefit of modified atmosphere packaging on the overall environmental impact of packed strawberries. Postharvest Biology and Technology, 2021, 177, 111521.	2.9	28
63	Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent casting. Composites Part A: Applied Science and Manufacturing, 2010, 41, 375-382.	3.8	27
64	Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 12-21.	3.8	26
65	An argumentation system for eco-efficient packaging material selection. Computers and Electronics in Agriculture, 2015, 113, 174-192.	3.7	25
66	Effect of nanoclay on the transfer properties of immanent additives in food packages. Journal of Materials Science, 2016, 51, 9732-9748.	1.7	25
67	A Decision Support System to design modified atmosphere packaging for fresh produce based on a bipolar flexible querying approach. Computers and Electronics in Agriculture, 2015, 111, 131-139.	3.7	24
68	Using life cycle assessment to quantify the environmental benefit of upcycling vine shoots as fillers in biocomposite packaging materials. International Journal of Life Cycle Assessment, 2021, 26, 738-752.	2.2	24
69	Effect of Concentration and Relative Humidity on the Transfer of Alkan-2-ones through Paper Coated with Wheat Gluten. Journal of Agricultural and Food Chemistry, 2007, 55, 867-875.	2.4	23
70	Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers, 2019, 11, 200.	2.0	22
71	Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nature Sustainability, 2022, 5, 472-478.	11.5	22
72	Performance of lipid-based moisture barriers in food products with intermediate water activity. European Journal of Lipid Science and Technology, 2006, 108, 1007-1020.	1.0	21

#	Article	IF	CITATIONS
73	Exploring the potential of gas-phase esterification to hydrophobize the surface of micrometric cellulose particles. European Polymer Journal, 2019, 115, 138-146.	2.6	20
74	Predicting moisture transfer and shelf-life of multidomain food products. Journal of Food Engineering, 2008, 86, 74-83.	2.7	18
75	Nanostructuring and Microstructuring of Materials from a Single Agropolymer for Sustainable MAP Preservation of Fresh Food. Packaging Technology and Science, 2013, 26, 137-148.	1.3	18
76	Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces. Polymers, 2020, 12, 1530.	2.0	18
77	Practical Identifiability Analysis for the Characterization of Mass Transport Properties in Migration Tests. Industrial & Engineering Chemistry Research, 2015, 54, 4725-4736.	1.8	17
78	Bioinspired co-polyesters of hydroxy-fatty acids extracted from tomato peel agro-wastes and glycerol with tunable mechanical, thermal and barrier properties. Industrial Crops and Products, 2021, 170, 113718.	2.5	17
79	Investigating Ethofumesate-Clay Interactions for Pesticide Controlled Release. Soil Science Society of America Journal, 2012, 76, 420-431.	1.2	16
80	Urban parks and gardens green waste: A valuable resource for the production of fillers for biocomposites applications. Waste Management, 2021, 120, 538-548.	3.7	16
81	Biodegradable herbicide delivery systems with slow diffusion in soil and UV protection properties. Pest Management Science, 2014, 70, 1697-1705.	1.7	15
82	Water vapor sorption and diffusion in wheat straw particles and their impact on the mass transfer properties of biocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	15
83	Water transport mechanisms in wheat gluten based (nano)composite materials. European Polymer Journal, 2013, 49, 1337-1346.	2.6	13
84	Gas transfer properties of wheat gluten coated paper adapted to eMAP of fresh parsley. Journal of Food Engineering, 2013, 119, 362-369.	2.7	13
85	Plant polymer as sensing material: Exploring environmental sensitivity of dielectric properties using interdigital capacitors at ultra high frequency. Sensors and Actuators B: Chemical, 2016, 230, 212-222.	4.0	13
86	Impact of high pressure treatment on the structure of montmorillonite. Applied Clay Science, 2011, 51, 174-176.	2.6	12
87	Feasibility of a Gelatin Temperature Sensor Based on Electrical Capacitance. Sensors, 2016, 16, 2197.	2.1	12
88	A mathematical model for tailoring antimicrobial packaging material containing encapsulated volatile compounds. Innovative Food Science and Emerging Technologies, 2017, 42, 64-72.	2.7	12
89	Hybrid iron montmorillonite nano-particles as an oxygen scavenger. Chemical Engineering Journal, 2019, 357, 750-760.	6.6	12
90	Effects of Thermomoulding Process Conditions on the Properties of Agro-Materials based on Fish Myofibrillar Proteins. LWT - Food Science and Technology, 1999, 32, 107-113.	2.5	11

#	Article	IF	CITATIONS
91	Determination of mass transport properties in food/packaging systems by local measurement with Raman microspectroscopy. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
92	Diffusivity and solubility of CO2 in dense solid food products. Journal of Food Engineering, 2015, 166, 1-9.	2.7	11
93	Evaluation of the Food Contact Suitability of Aged Bio-Nanocomposite Materials Dedicated to Food Packaging Applications. Applied Sciences (Switzerland), 2020, 10, 877.	1.3	11
94	Nanoparticle size and water diffusivity in nanocomposite agro-polymer based films. European Polymer Journal, 2013, 49, 299-306.	2.6	9
95	Contribution of nanoclay to the additive partitioning in polymers. Applied Clay Science, 2017, 146, 27-34.	2.6	9
96	The mixed impact of nanoclays on the apparent diffusion coefficient of additives in biodegradable polymers in contact with food. Applied Clay Science, 2019, 180, 105170.	2.6	9
97	Physical–chemical and structural stability of PHBV/wheat straw fibers based biocomposites under food contact conditions. Journal of Applied Polymer Science, 2020, 137, 49231.	1.3	9
98	The Use of Modeling Tools to Better Evaluate the Packaging Benefice on Our Environment. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	9
99	Influence of the Experimental Errors and Their Propagation on the Accuracy of Identified Kinetics Parameters: Oxygen and Temperature Effects on Ascorbic Acid Oxidation during Storage. Industrial & Engineering Chemistry Research, 2012, 51, 1131-1142.	1.8	8
100	Influence of Packaging Conditions on Natural Microbial Population Growth of Endive. Journal of Food Protection, 2005, 68, 1020-1025.	0.8	7
101	Moisture barrier and physical properties of acetylated derivatives with increasing acetylation degree. European Journal of Lipid Science and Technology, 2009, 111, 489-498.	1.0	7
102	Performance of a non-invasive methodology for assessing oxygen diffusion in liquid and solid food products. Journal of Food Engineering, 2016, 171, 87-94.	2.7	7
103	Effect of Cooling Rate on the Structural and Moisture Barrier Properties of High and Low Melting Point Fats. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 133-145.	0.8	6
104	New Packaging Materials Based on Renewable Resources: Properties, Applications, and Prospects. Food Engineering Series, 2010, , 619-630.	0.3	6
105	Worst case prediction of additives migration from polystyrene for food safety purposes: a model update. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 563-576.	1.1	6
106	Upcycling of Vine Shoots: Production of Fillers for PHBV-Based Biocomposite Applications. Journal of Polymers and the Environment, 2021, 29, 404-417.	2.4	6
107	Elaboration and Characterization of Active Films Containing Iron–Montmorillonite Nanocomposites for O2 Scavenging. Nanomaterials, 2019, 9, 1193.	1.9	5
108	3D Modelling of Mass Transfer into Bio-Composite. Polymers, 2021, 13, 2257.	2.0	5

#	Article	IF	CITATIONS
109	Importance of the structure of paper support in gas transfer properties of proteinâ€coated paper. Journal of Applied Polymer Science, 2013, 130, 2848-2858.	1.3	4
110	CO2 and O2 solubility and diffusivity data in food products stored in data warehouse structured by ontology. Data in Brief, 2016, 7, 1556-1559.	0.5	4
111	Poly(3-hydroxybutyrate-co-hydroxyvalerate) and wheat straw fibers biocomposites produced by co-grinding: Processing and mechanical behavior. Journal of Composite Materials, 2017, 51, 985-996.	1.2	4
112	A global visual method for measuring the deterioration of strawberries in MAP. MethodsX, 2018, 5, 944-949.	0.7	4
113	Gas barrier enhancement of uncharged apolar polymeric films by self-assembling stratified nano-composite films. RSC Advances, 2019, 9, 10938-10947.	1.7	4
114	Multi-faceted migration in food contact polyethylene-based nanocomposite packaging. Applied Clay Science, 2020, 198, 105803.	2.6	4
115	Eco-Efficient Packaging Material Selection for Fresh Produce: Industrial Session. Lecture Notes in Computer Science, 2014, , 305-310.	1.0	4
116	Shelf Life and Moisture Transfer Predictions in a Composite Food Product: Impact of Preservation Techniques. International Journal of Food Engineering, 2008, 4, .	0.7	3
117	Safety assessment of the process â€~Morssinkhof Plastics', used to recycle highâ€density polyethylene and polypropylene crates for use as food contact materials. EFSA Journal, 2018, 16, e05117.	0.9	3
118	Physical-Chemical and Structural Stability of Poly(3HB-co-3HV)/(ligno-)cellulosic Fibre-Based Biocomposites over Successive Dishwashing Cycles. Membranes, 2022, 12, 127.	1.4	3
119	A novel hybrid self-assembly process for synthesising stratified polyethylene–organoclay films. RSC Advances, 2016, 6, 75640-75650.	1.7	2
120	Safety assessment of the process â€~EREMA Recycling (MPR, Basic and Advanced technologies)', used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04842.	0.9	2
121	Adapting gravimetric sorption analyzer to estimate water vapor diffusivity in micrometric size cellulose particles. Cellulose, 2019, 26, 8575-8587.	2.4	2
122	Food-Grade PE Recycling: Effect of Nanoclays on the Decontamination Efficacy. Polymers, 2020, 12, 822.	2.0	2
123	Safety assessment of the process †Veroniki Ecogrup SRL', based on Starlinger Decon technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04900.	0.9	1
124	Safety assessment of the process â€~PEGRAâ€V', based on Starlinger IV+® technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04899.	0.9	1
125	Safety assessment of the process â€~MÇkische Faser', based on NGR technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04898.	0.9	1
126	Safety assessment of the process â€~Concept Plastic Packaging', based on Starlinger Decon technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05166.	0.9	1

#	Article	IF	CITATIONS
127	Safety assessment of the process â€~RecyPET HungÃįria', based on RecyPET HungÃįria technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05481.	0.9	1
128	Safety assessment of the process â€~Linpac', based on Linpac super clean technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05323.	0.9	1
129	Safety assessment of the process â€~4PET', based on EREMA Basic technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04845.	0.9	0
130	Safety assessment of the process â€~Coexpan Deutschland', based on EREMA Basic technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04846.	0.9	0
131	Safety assessment of the process â€~Krones' used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e05015.	0.9	0
132	Safety assessment of the process â€~Plastienvase', based on EREMA Basic technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04843.	0.9	0
133	Safety assessment of the process â€~Alimpet', based on EREMA MPR technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2017, 15, e04844.	0.9	0
134	Safety assessment of the process â€~Coexpan Montonate', based on Starlinger Decon technology, used to recycle post onsumer PET into food contact materials. EFSA Journal, 2017, 15, e04848.	0.9	0
135	Safety assessment of the process â€~EstPak Plastik', based on Starlinger Decon technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05165.	0.9	0
136	Safety assessment of the process â€~Envases Ureña', based on Starlinger Decon technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05118.	0.9	0
137	Safety assessment of the process â€ ⁻ BTB PET DIRECT IV* +', used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05227.	0.9	0
138	Safety assessment of the process â€~Gneuss 2', based on Gneuss technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05325.	0.9	0
139	Safety assessment of the process â€~Gneuss 1', based on Gneuss technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05324.	0.9	0
140	Safety assessment of the process â€~General Plastic', based on Starlinger Decon technology, used to recycle postâ€consumer PET into food contact materials. EFSA Journal, 2018, 16, e05388.	0.9	0