
Jin-Woo Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6484056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ferroelectric and piezoelectric properties of BaTiO ₃ -templated 0.36BiScO ₃ -0.64PbTiO ₃ thick films for piezoelectric device applications. Journal of Asian Ceramic Societies, 2022, 10, 138-149.	2.3	2
2	A Self-Charging Supercapacitor for a Patch-Type Glucose Sensor. ACS Applied Materials & Interfaces, 2022, 14, 3838-3848.	8.0	32
3	Redox-Active Water-in-Salt Electrolyte for High-Energy-Density Supercapacitors. ACS Energy Letters, 2022, 7, 1266-1273.	17.4	33
4	Mixed Solvent Engineering for Morphology Optimization of the Electron Transport Layer in Perovskite Photovoltaics. ACS Applied Energy Materials, 2022, 5, 387-396.	5.1	8
5	<i>In Situ</i> Scanning Electron Microscopy Analysis of the Interfacial Failure of Oxide Scales on Stainless Steels and Its Effect on Sticking during Hot Rolling. ACS Omega, 2022, 7, 15174-15185.	3.5	4
6	Phase-Transitional Ionogel-Based Supercapacitors for a Selective Operation. ACS Applied Materials & Interfaces, 2022, 14, 23375-23382.	8.0	5
7	Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nature Nanotechnology, 2022, 17, 590-597.	31.5	81
8	Phenylethylammonium-formamidinium-methylammonium quasi-2D/3D tin wide-bandgap perovskite solar cell with improved efficiency and stability. Chemical Engineering Journal, 2022, 446, 137388.	12.7	17
9	Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 1245-1252.	8.0	28
10	Understanding the Synergistic Effect of Device Architecture Design toward Efficient Perovskite Lightâ€Emitting Diodes Using Interfacial Layer Engineering. Advanced Materials Interfaces, 2021, 8, 2001712.	3.7	29
11	Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden–Popper perovskite solar cells. Energy and Environmental Science, 2021, 14, 4915-4925.	30.8	24
12	Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics, 2021, 15, 148-155.	31.4	590
13	History and Perspectives on Ultrafast Supercapacitors for AC Line Filtering. Advanced Energy Materials, 2021, 11, 2003306.	19.5	32
14	Intrinsically stretchable organic light-emitting diodes. Science Advances, 2021, 7, .	10.3	76
15	Water-in-Salt Electrolyte Enables Ultrafast Supercapacitors for AC Line Filtering. ACS Energy Letters, 2021, 6, 769-777.	17.4	49
16	Tailored Hydrogen-Free Carbon Films by Tuning the sp ² /sp ³ Configuration. ACS Applied Electronic Materials, 2021, 3, 1771-1779.	4.3	12
17	Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7, .	10.3	11
18	Tailoring the Structure of Lowâ€Dimensional Halide Perovskite through a Room Temperature Solution Process: Role of Ligands. Small Methods, 2021, 5, e2100054.	8.6	8

JIN-WOO PARK

#	Article	IF	CITATIONS
19	Quantum-confinement effect on the linewidth broadening of metal halide perovskite-based quantum dots. Journal of Physics Condensed Matter, 2021, 33, .	1.8	4
20	Synergistic Molecular Engineering of Holeâ€Injecting Conducting Polymers Overcomes Luminescence Quenching in Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100646.	7.3	14
21	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	1.8	49
22	Ligand-Assisted Sulfide Surface Treatment of CsPbI ₃ Perovskite Quantum Dots to Increase Photoluminescence and Recovery. ACS Photonics, 2021, 8, 1979-1987.	6.6	33
23	Ultrafast Supercapacitors: History and Perspectives on Ultrafast Supercapacitors for AC Line Filtering (Adv. Energy Mater. 27/2021). Advanced Energy Materials, 2021, 11, 2170107.	19.5	3
24	Chemically Robust Indium Tin Oxide/Graphene Anode for Efficient Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 9074-9080.	8.0	6
25	Production of C, N Alternating 2D Materials Using Covalent Modification and Their Electroluminescence Performance. Small Science, 2021, 1, 2000042.	9.9	9
26	Water Passivation of Perovskite Nanocrystals Enables Air‧table Intrinsically Stretchable Color onversion Layers for Stretchable Displays. Advanced Materials, 2020, 32, e2001989.	21.0	51
27	Aromatic nonpolar organogels for efficient and stable perovskite green emitters. Nature Communications, 2020, 11, 4638.	12.8	28
28	Production of Metalâ€Free C, N Alternating Nanoplatelets and Their In Vivo Fluorescence Imaging Performance without Labeling. Advanced Functional Materials, 2020, 30, 2004800.	14.9	5
29	Perovskite Emitters as a Platform Material for Downâ€Conversion Applications. Advanced Materials Technologies, 2020, 5, 2000091.	5.8	38
30	Self-healable soft shield for Î ³ -ray radiation based on polyacrylamide hydrogel composites. Scientific Reports, 2020, 10, 21689.	3.3	14
31	All-Solution-Processed BiVO ₄ /TiO ₂ Photoanode with NiCo ₂ O ₄ Nanofiber Cocatalyst for Enhanced Solar Water Oxidation. ACS Applied Energy Materials, 2020, 3, 5646-5656.	5.1	23
32	Solution-processed graphene oxide electrode for supercapacitors fabricated using low temperature thermal reduction. RSC Advances, 2020, 10, 22102-22111.	3.6	8
33	Fabrication of nickel oxide composites with carbon nanotubes for enhanced charge transport in planar perovskite solar cells. Applied Surface Science, 2020, 516, 146116.	6.1	22
34	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	12.8	108
35	Highly Transparent and Colorless Organic Lightâ€Emitting Diodes. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900707.	2.4	8
36	Synthesis of V-doped In ₂ O ₃ Nanocrystals via Digestive-Ripening Process and Their Electrocatalytic Properties in CO ₂ Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 11890-11897.	8.0	44

JIN-WOO PARK

#	Article	IF	CITATIONS
37	Electroluminescence of Perovskite Nanocrystals with Ligand Engineering. Trends in Chemistry, 2020, 2, 837-849.	8.5	22
38	Improving the Stability of Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Using Doped Electron Transport Materials. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900426.	1.8	11
39	Allâ€Solutionâ€Processed Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes under Ambient Air. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900642.	1.8	13
40	Using Electrospun AgNW/P(VDF-TrFE) Composite Nanofibers to Create Transparent and Wearable Single-Electrode Triboelectric Nanogenerators for Self-Powered Touch Panels. ACS Applied Materials & Interfaces, 2019, 11, 15088-15096.	8.0	49
41	Rational Design of a Redox-Active Nonaqueous Electrolyte for a High-Energy-Density Supercapacitor Based on Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2019, 7, 7728-7735.	6.7	36
42	CMK-5-Based High Energy Density Electrical Double Layer Capacitor for AC Line Filtering. ACS Omega, 2019, 4, 18900-18907.	3.5	19
43	Fine Control of Perovskite Crystallization and Reducing Luminescence Quenching Using Selfâ€Doped Polyaniline Hole Injection Layer for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2019, 29, 1807535.	14.9	58
44	Novel Patterning Method for Nanomaterials and Its Application to Flexible Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9704-9717.	8.0	22
45	Wearable, Luminescent Oxygen Sensor for Transcutaneous Oxygen Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 41026-41034.	8.0	38
46	SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability. Journal of Materials Science, 2018, 53, 12284-12294.	3.7	25
47	Highly Conformable, Transparent Electrodes for Epidermal Electronics. Nano Letters, 2018, 18, 4531-4540.	9.1	182
48	Spatially Pressureâ€Mapped Thermochromic Interactive Sensor. Advanced Materials, 2017, 29, 1606120.	21.0	86
49	Designing an electron-transport layer for highly efficient, reliable, and solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 3097-3106.	5.5	33
50	Molecularâ€Printed Thermochromic with Fast Color Switching. Advanced Optical Materials, 2017, 5, 1700627.	7.3	23
51	Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 33728-33734.	8.0	25
52	Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Patterned Ag Nanowire Networks. ACS Applied Materials & Interfaces, 2017, 9, 26407-26416.	8.0	158
53	Flexible Encapsulation Materials Based on Silica Aerogels for Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2016, 16, 11569-11574.	0.9	2
54	Fabrication of Invisible Ag Nanowire Electrode Patterns Based on Laser-Induced Rayleigh Instability. Journal of Physical Chemistry C, 2016, 120, 20471-20477.	3.1	19

JIN-WOO PARK

#	Article	IF	CITATIONS
55	Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates. Journal of Applied Polymer Science, 2016, 133, .	2.6	34
56	Alignment of nanoparticles, nanorods, and nanowires during chemical vapor deposition of silicon. Applied Physics A: Materials Science and Processing, 2015, 120, 889-895.	2.3	4
57	Foldable Transparent Substrates with Embedded Electrodes for Flexible Electronics. ACS Applied Materials & Interfaces, 2015, 7, 18574-18580.	8.0	38
58	Effect of the crystallinity of indium tin oxide on the charge transfer at the interfaces and the performances of flexible organic light emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 414-424.	1.8	17
59	Energy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte. ACS Applied Materials & Interfaces, 2014, 6, 19499-19503.	8.0	53
60	Highly flexible, hybrid-structured indium tin oxides for transparent electrodes on polymer substrates. Applied Physics Letters, 2013, 102, .	3.3	8
61	Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing. Journal of the Korean Physical Society, 2012, 61, 387-396.	0.7	Ο
62	The Fracture Resistance of Bonded Au Wires for Interconnection. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 106-109.	1.3	1
63	Flexible Job Shop Scheduling with Multi-level Job Structures JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2003, 46, 33-38.	0.3	6
64	Application of the transient liquid phase bonding to microelectronics and MEMS packaging. , 0, , .		2