
Wei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6483581/publications.pdf Version: 2024-02-01

WEILIII

#	Article	IF	CITATIONS
1	A Family of Highly Efficient Cul-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach. Journal of the American Chemical Society, 2015, 137, 9400-9408.	13.7	211
2	Copper lodide Based Hybrid Phosphors for Energyâ€Efficient General Lighting Technologies. Advanced Functional Materials, 2018, 28, 1705593.	14.9	184
3	Systematic Approach in Designing Rare-Earth-Free Hybrid Semiconductor Phosphors for General Lighting Applications. Journal of the American Chemical Society, 2014, 136, 14230-14236.	13.7	169
4	All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals. Journal of the American Chemical Society, 2017, 139, 9281-9290.	13.7	146
5	A Systematic Approach to Achieving High Performance Hybrid Lighting Phosphors with Excellent Thermal―and Photostability. Advanced Functional Materials, 2017, 27, 1603444.	14.9	125
6	Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem, 2019, 1, 100008.	19.1	76
7	Review of recent advances in inorganic photoresists. RSC Advances, 2020, 10, 8385-8395.	3.6	73
8	Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. Journal of the American Chemical Society, 2020, 142, 4242-4253.	13.7	72
9	Chromophore-immobilized luminescent metal–organic frameworks as potential lighting phosphors and chemical sensors. Chemical Communications, 2016, 52, 10249-10252.	4.1	70
10	High-Performance Blue-Excitable Yellow Phosphor Obtained from an Activated Solvochromic Bismuth-Fluorophore Metal–Organic Framework. Crystal Growth and Design, 2016, 16, 4178-4182.	3.0	50
11	Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries. Electrochimica Acta, 2018, 290, 150-164.	5.2	48
12	A New Type of Hybrid Copper lodide as Nontoxic and Ultrastable LED Emissive Layer Material. ACS Energy Letters, 2021, 6, 2565-2574.	17.4	46
13	A mechanochemical route toward the rational, systematic, and cost-effective green synthesis of strongly luminescent copper iodide based hybrid phosphors. Journal of Materials Chemistry C, 2017, 5, 5962-5969.	5.5	42
14	Two blue-light excitable yellow-emitting LMOF phosphors constructed by triangular tri(4-pyridylphenyl)amine. Dalton Transactions, 2017, 46, 956-961.	3.3	36
15	Zero-dimensional ionic antimony halide inorganic–organic hybrid with strong greenish yellow emission. Journal of Materials Chemistry C, 2020, 8, 7300-7303.	5.5	35
16	Strongly luminescent inorganic–organic hybrid semiconductors with tunable white light emissions by doping. Journal of Materials Chemistry C, 2019, 7, 1484-1490.	5.5	30
17	Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
18	Two-Dimensional Copper Iodide-Based Inorganic–Organic Hybrid Semiconductors: Synthesis, Structures, and Optical and Transport Properties. Chemistry of Materials, 2021, 33, 5317-5325.	6.7	26

Wei Liu

#	Article	IF	CITATIONS
19	Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors Cu ₄ X ₆ (L) ₂ (X = Br, I) composed of covalent, ionic and coordinate bonds. Journal of Materials Chemistry C, 2020, 8, 16790-16797.	5.5	24
20	Strongly emissive white-light-emitting silver iodide based inorganic–organic hybrid structures with comparable quantum efficiency to commercial phosphors. Chemical Communications, 2020, 56, 1481-1484.	4.1	20
21	An antimony based organic–inorganic hybrid coating material with high quantum efficiency and thermal quenching effect. Chemical Communications, 2021, 57, 1754-1757.	4.1	18
22	Strategies for optimizing the luminescence and stability of copper iodide organic–inorganic hybrid structures. New Journal of Chemistry, 2021, 45, 10989-10996.	2.8	13
23	A highly luminescent and stable copper halide ionic hybrid structure with an anionic CuBr ₂ (tpp) ₂ module. Journal of Materials Chemistry C, 2021, 9, 12530-12534.	5.5	8
24	Incorporation of an Emissive Cu ₄ I ₄ Core into Cross-Linked Networks: An Effective Strategy for Luminescent Organic–Inorganic Hybrid Coatings. Inorganic Chemistry, 2021, 60, 15049-15054.	4.0	8
25	Enhanced thermal stability and wettability of an electrospun fluorinated poly(aryl ether ketone) fibrous separator for lithium-ion batteries. New Journal of Chemistry, 2020, 44, 3838-3846.	2.8	8
26	Fabrication of Nanopore in MoS2-Graphene vdW Heterostructure by Ion Beam Irradiation and the Mechanical Performance. Nanomaterials, 2022, 12, 196.	4.1	8
27	Crystalline Al ₂ O ₃ modified porous poly(aryl ether ketone) (PAEK) composite separators for high performance lithium-ion batteries <i>via</i> an electrospinning technique. CrystEngComm, 2020, 22, 1577-1585.	2.6	7
28	Synthesis, structure and photoluminescence properties of three copper(<scp>i</scp>) iodide based inorganic–organic hybrid structures with pyrazine derivatives. New Journal of Chemistry, 2020, 44, 14103-14107.	2.8	7
29	Anti-corrosion performance of aniline trimer-containing sol–gel hybrid coatings for mild steel substrate. Journal of Sol-Gel Science and Technology, 2018, 87, 464-477.	2.4	6
30	Challenges and Opportunities for the Blue Perovskite Quantum Dot Light-Emitting Diodes. Crystals, 2022, 12, 929.	2.2	6
31	Organic-inorganic hybrid anticorrosion coatings with aniline substituted group. Molecular Crystals and Liquid Crystals, 2020, 710, 103-109.	0.9	5
32	Copper iodide organic-inorganic hybrid chelating clusters as luminescent coating materials. Inorganica Chimica Acta, 2021, 518, 120241.	2.4	5
33	Synthesis, characterization, luminescence properties of copper(I) bromide based coordination compounds. Inorganica Chimica Acta, 2020, 512, 119893.	2.4	4
34	Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures. Angewandte Chemie, 2022, 134, .	2.0	4
35	SYNTHESIS OF ORGANIC–INORGANIC HYBRID COATINGS FOR THE PROTECTION OF ALUMINUM SUBSTRATES. Surface Review and Letters, 2021, 28, 2150033.	1.1	2
36	Organic-inorganic hybrid corrosion protection coating materials for offshore wind power devices: a mini-review and perspective. Molecular Crystals and Liquid Crystals, 2020, 710, 74-89.	0.9	2

Wei Liu

#	Article	IF	CITATIONS
37	A strongly luminescent copper (I) coordination complex with near-unity quantum efficiency. Molecular Crystals and Liquid Crystals, 2020, 709, 54-60.	0.9	2
38	Highly stable silver (I) coordination complex as efficient photocatalyst for the degradation of organic dyes in water. Molecular Crystals and Liquid Crystals, 2020, 702, 110-117.	0.9	1
39	A New Copper(I) lodide Based Organic-Inorganic Hybrid Structure with Red Emission. Crystals, 2021, 11, 594.	2.2	1
40	Titanium-containing organic–inorganic hybrid coatings for the corrosion protection of copper in sodium chloride medium. Molecular Crystals and Liquid Crystals, 2021, 722, 87-94.	0.9	1
41	New Copper Bromide Organic-Inorganic Hybrid Molecular Compounds with Anionic Inorganic Core and Cationic Organic Ligands. Crystals, 2022, 12, 19.	2.2	1
42	Titanium-containing organic–inorganic hybrid coatings: effect of the amount of the coupling reagent. Molecular Crystals and Liquid Crystals, 0, , 1-8.	0.9	1
43	Blue-excitable-yellow-emitting copper iodide inorganic-organic hybrid structure with quinoxaline derivative. Inorganic Chemistry Communication, 2020, 121, 108185.	3.9	Ο
44	Titelbild: Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures (Angew. Chem. 8/2022). Angewandte Chemie, 2022, 134, .	2.0	0