
Heinz P Singer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6483201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmental Science & Technology, 2014, 48, 2097-2098.	10.0	2,300
2	Occurrence and Fate of Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, Ketoprofen, and Naproxen in Surface Waters. Environmental Science & Technology, 2003, 37, 1061-1068.	10.0	830
3	Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environmental Science & Technology, 2009, 43, 7862-7869.	10.0	726
4	Triclosan:  Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment:  Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environmental Science & Technology, 2002, 36, 4998-5004.	10.0	699
5	LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 2010, 397, 943-951.	3.7	615
6	Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 6237-6255.	3.7	489
7	Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?. Environmental Science & Technology, 2017, 51, 11505-11512.	10.0	453
8	Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination. Environmental Science & Technology, 2012, 46, 1536-1545.	10.0	407
9	Strategies to Characterize Polar Organic Contamination in Wastewater: Exploring the Capability of High Resolution Mass Spectrometry. Environmental Science & Technology, 2014, 48, 1811-1818.	10.0	333
10	Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/l level in surface and waste water. Journal of Chromatography A, 2001, 911, 225-234.	3.7	305
11	How a Complete Pesticide Screening Changes the Assessment of Surface Water Quality. Environmental Science & Technology, 2014, 48, 5423-5432.	10.0	292
12	Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME Journal, 2019, 13, 346-360.	9.8	289
13	Identification of Transformation Products of Organic Contaminants in Natural Waters by Computer-Aided Prediction and High-Resolution Mass Spectrometry. Environmental Science & Technology, 2009, 43, 7039-7046.	10.0	275
14	High-Throughput Identification of Microbial Transformation Products of Organic Micropollutants. Environmental Science & Technology, 2010, 44, 6621-6627.	10.0	250
15	Phototransformation of Triclosan in Surface Waters:Â A Relevant Elimination Process for This Widely Used BiocideLaboratory Studies, Field Measurements, and Modeling. Environmental Science & Technology, 2002, 36, 3482-3489.	10.0	233
16	Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters. Water Research, 2010, 44, 2850-2862.	11.3	219
17	Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry – Identification of unknown sources and compounds. Water Research, 2015, 87, 145-154.	11.3	202
18	Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2012, 1268, 74-83.	3.7	198

#	Article	IF	CITATIONS
19	Fully automated online solid phase extraction coupled directly to liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2005, 1097, 138-147.	3.7	170
20	Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environmental Pollution, 2010, 158, 3054-3064.	7.5	170
21	Sources of pesticides in surface waters in Switzerland: pesticide load through waste water treatment plants––current situation and reduction potential. Chemosphere, 2002, 48, 307-315.	8.2	159
22	Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Analytical and Bioanalytical Chemistry, 2008, 391, 2265-2276.	3.7	158
23	Alleviating the Reference Standard Dilemma Using a Systematic Exact Mass Suspect Screening Approach with Liquid Chromatography-High Resolution Mass Spectrometry. Analytical Chemistry, 2013, 85, 10312-10320.	6.5	153
24	Simultaneous Assessment of Sources, Processes, and Factors Influencing Herbicide Losses to Surface Waters in a Small Agricultural Catchment. Environmental Science & Technology, 2004, 38, 3827-3834.	10.0	151
25	Accelerated Isotope Fine Structure Calculation Using Pruned Transition Trees. Analytical Chemistry, 2015, 87, 5738-5744.	6.5	150
26	Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. Journal of Hazardous Materials, 2020, 387, 121712.	12.4	150
27	Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Research, 2017, 110, 366-377.	11.3	146
28	Organic Micropollutants in Rivers Downstream of the Megacity Beijing: Sources and Mass Fluxes in a Large-Scale Wastewater Irrigation System. Environmental Science & Technology, 2012, 46, 8680-8688.	10.0	138
29	Variability of Herbicide Losses from 13 Fields to Surface Water within a Small Catchment after a Controlled Herbicide Application. Environmental Science & Technology, 2004, 38, 3835-3841.	10.0	137
30	Dissipation and Transport of Veterinary Sulfonamide Antibiotics after Manure Application to Grassland in a Small Catchment. Environmental Science & Technology, 2007, 41, 7349-7355.	10.0	136
31	Surface Runoff and Transport of Sulfonamide Antibiotics and Tracers on Manured Grassland. Journal of Environmental Quality, 2005, 34, 1363-1371.	2.0	135
32	New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Research, 2019, 165, 114972.	11.3	134
33	Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Research, 2015, 71, 306-317.	11.3	125
34	Rapid Screening for Exposure to "Non-Target―Pharmaceuticals from Wastewater Effluents by Combining HRMS-Based Suspect Screening and Exposure Modeling. Environmental Science & Technology, 2016, 50, 6698-6707.	10.0	125
35	A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. Journal of Environmental Monitoring, 2010, 12, 2100.	2.1	119
36	Including Mixtures in the Determination of Water Quality Criteria for Herbicides in Surface Water. Environmental Science & Technology, 2006, 40, 426-435.	10.0	115

#	Article	IF	CITATIONS
37	Relevance of urban glyphosate use for surface water quality. Chemosphere, 2010, 81, 422-429.	8.2	112
38	Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides – evaluation of three Chemcatcher™ configurations. Water Research, 2009, 43, 903-914.	11.3	110
39	Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2004, 1028, 277-286.	3.7	104
40	Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. Journal of Chromatography A, 2006, 1128, 1-9.	3.7	104
41	Organic micropollutants in the Yangtze River: Seasonal occurrence and annual loads. Science of the Total Environment, 2014, 472, 789-799.	8.0	102
42	Pesticide Risks in Small Streams—How to Get as Close as Possible to the Stress Imposed on Aquatic Organisms. Environmental Science & Technology, 2018, 52, 4526-4535.	10.0	100
43	Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Research, 2014, 60, 228-241.	11.3	95
44	Transformation of Î ² -Lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science & Technology, 2010, 44, 5940-5948.	10.0	92
45	Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Analytical and Bioanalytical Chemistry, 2014, 406, 7323-7335.	3.7	91
46	Automatic recalibration and processing of tandem mass spectra using formula annotation. Journal of Mass Spectrometry, 2013, 48, 89-99.	1.6	87
47	Loss rates of urban biocides can exceed those of agricultural pesticides. Science of the Total Environment, 2011, 409, 920-932.	8.0	82
48	Elimination of polar micropollutants and anthropogenic markers by wastewater treatment in Beijing, China. Chemosphere, 2015, 119, 1054-1061.	8.2	79
49	Source area effects on herbicide losses to surface waters—A case study in the Swiss Plateau. Agriculture, Ecosystems and Environment, 2008, 128, 177-184.	5.3	78
50	Mixture Toxicity of Three Photosystem II Inhibitors (Atrazine, Isoproturon, and Diuron) Toward Photosynthesis of Freshwater Phytoplankton Studied in Outdoor Mesocosms. Environmental Science & Technology, 2008, 42, 6424-6430.	10.0	78
51	Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation. Environmental Science and Pollution Research, 2010, 17, 341-354.	5.3	62
52	Input Dynamics and Fate in Surface Water of the Herbicide Metolachlor and of its Highly Mobile Transformation Product Metolachlor ESA. Environmental Science & Technology, 2008, 42, 5507-5513.	10.0	56
53	Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. Global Change Biology, 2020, 26, 6363-6382.	9.5	52
54	Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Environmental Pollution, 2010, 158, 167-174.	7.5	51

#	Article	IF	CITATIONS
55	Input and Dynamic Behavior of the Organic Pollutants Tetrachloroethene, Atrazine, and NTA in a Lake: A Study Combining Mathematical Modeling and Field Measurements. Environmental Science & Technology, 1994, 28, 1674-1685.	10.0	50
56	Comprehensive micropollutant screening using LC-HRMS/MS at three riverbank filtration sites to assess natural attenuation and potential implications for human health. Water Research X, 2018, 1, 100007.	6.1	48
57	Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data. Journal of Cheminformatics, 2017, 9, 12.	6.1	44
58	Multi-Level Approach for the Integrated Assessment of Polar Organic Micropollutants in an International Lake Catchment: The Example of Lake Constance. Environmental Science & Technology, 2013, 47, 7028-7036.	10.0	43
59	Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Analytical and Bioanalytical Chemistry, 2019, 411, 2555-2567.	3.7	42
60	Comparison of Atrazine Losses in Three Small Headwater Catchments. Journal of Environmental Quality, 2005, 34, 1873-1882.	2.0	40
61	Understanding consumption-related sucralose emissions — A conceptual approach combining substance-flow analysis with sampling analysis. Science of the Total Environment, 2010, 408, 3261-3269.	8.0	40
62	Comparison of different types of landfill leachate treatments by employment of nontarget screening to identify residual refractory organics and principal component analysis. Science of the Total Environment, 2018, 635, 984-994.	8.0	39
63	Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Research, 2021, 196, 116994.	11.3	35
64	Assessing Exposure to Transformation Products of Soil-Applied Organic Contaminants in Surface Water: Comparison of Model Predictions and Field Data. Environmental Science & Technology, 2011, 45, 2833-2841.	10.0	29
65	Paradise lost? Pesticide pollution in a European region with considerable amount of traditional agriculture. Water Research, 2021, 188, 116528.	11.3	28
66	Assessing Emissions from Pharmaceutical Manufacturing Based on Temporal High-Resolution Mass Spectrometry Data. Environmental Science & amp; Technology, 2020, 54, 4110-4120.	10.0	27
67	Passive samplers to quantify micropollutants in sewer overflows: accumulation behaviour and field validation for short pollution events. Water Research, 2019, 160, 350-360.	11.3	26
68	Biotransformation of Chemicals in Water–Sediment Suspensions: Influencing Factors and Implications for Persistence Assessment. Environmental Science and Technology Letters, 2020, 7, 854-860.	8.7	26
69	Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: a snapshot in the lower Danube river basin. Environmental Science and Pollution Research, 2018, 25, 31040-31050.	5.3	25
70	Transportable Automated HRMS Platform "MS ² field―Enables Insights into Water-Quality Dynamics in Real Time. Environmental Science and Technology Letters, 2021, 8, 373-380.	8.7	25
71	Effects of treated wastewater on the ecotoxicity of small streams – Unravelling the contribution of chemicals causing effects. PLoS ONE, 2019, 14, e0226278.	2.5	23
72	Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Analytical and Bioanalytical Chemistry, 2019, 411, 3151-3164.	3.7	21

#	Article	IF	CITATIONS
73	Polar Organic Micropollutants In The Water Cycle. , 2008, , 103-116.		20
74	Retrospective HRMS Screening and Dedicated Target Analysis Reveal a Wide Exposure to Pyrrolizidine Alkaloids in Small Streams. Environmental Science & Technology, 2021, 55, 1036-1044.	10.0	18
75	Microvolume trace environmental analysis using peak-focusing online solid-phase extraction–nano-liquid chromatography–high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 1879-1890.	3.7	16
76	Exploring the Behaviour of Emerging Contaminants in the Water Cycle using the Capabilities of High Resolution Mass Spectrometry. Chimia, 2014, 68, 793.	0.6	15
77	Quantification of Active Ingredient Losses from Formulating Pharmaceutical Industries and Contribution to Wastewater Treatment Plant Emissions. Environmental Science & Technology, 2020, 54, 15046-15056.	10.0	10
78	Large-scale assessment of organic contaminant emissions from chemical and pharmaceutical manufacturing into Swiss surface waters. Water Research, 2022, 215, 118221.	11.3	10
79	The Challenge of the Identification and Quantification of Transformation Products in the Aquatic Environment Using High Resolution Mass Spectrometry. Environmental Pollution, 2010, , 195-211.	0.4	7
80	Detective Work on the Rhine River in Basel – Finding Pollutants and Polluters. Chimia, 2018, 72, 547.	0.6	4
81	Ultrasensitive Quantification of Pyrethroid and Organophosphate Insecticides in Surface Water. Chimia, 2020, 74, 506.	0.6	0
82	Title is missing!. , 2019, 14, e0226278.		0
83	Title is missing!. , 2019, 14, e0226278.		0
84	Title is missing!. , 2019, 14, e0226278.		0
85	Title is missing!. , 2019, 14, e0226278.		О