Xianfeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6482812/publications.pdf Version: 2024-02-01

XIANEENC LL

#	Article	IF	CITATIONS
1	Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy and Environmental Science, 2011, 4, 1147.	30.8	856
2	Vanadium Flow Battery for Energy Storage: Prospects and Challenges. Journal of Physical Chemistry Letters, 2013, 4, 1281-1294.	4.6	443
3	An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy and Environmental Science, 2020, 13, 3527-3535.	30.8	442
4	Porous membranes in secondary battery technologies. Chemical Society Reviews, 2017, 46, 2199-2236.	38.1	357
5	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	9.1	306
6	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for Highâ€Sulfurâ€Loading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	21.0	303
7	Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)?. Energy and Environmental Science, 2011, 4, 1676.	30.8	292
8	Inhibition of Zinc Dendrite Growth in Zincâ€Based Batteries. ChemSusChem, 2018, 11, 3996-4006.	6.8	291
9	Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy and Environmental Science, 2016, 9, 441-447.	30.8	265
10	Dendriteâ€Free Zinc Deposition Induced by Tinâ€Modified Multifunctional 3D Host for Stable Zincâ€Based Flow Battery. Advanced Materials, 2020, 32, e1906803.	21.0	263
11	Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. ACS Applied Materials & amp; Interfaces, 2017, 9, 13213-13222.	8.0	214
12	Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. Journal of Power Sources, 2012, 218, 455-461.	7.8	207
13	Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance. Journal of Membrane Science, 2008, 308, 66-74.	8.2	189
14	A novel single flow zinc–bromine battery with improved energy density. Journal of Power Sources, 2013, 235, 1-4.	7.8	181
15	Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage. Energy and Environmental Science, 2019, 12, 1834-1839.	30.8	181
16	Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. Journal of Power Sources, 2011, 196, 482-487.	7.8	180
17	A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy and Environmental Science, 2020, 13, 135-143.	30.8	180
18	Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy and Environmental Science, 2012, 5, 6299-6303.	30.8	171

#	Article	IF	CITATIONS
19	3D Flexible, Conductive, and Recyclable Ti ₃ C ₂ T _{<i>x</i>} MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14, 8678-8688.	14.6	164
20	Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Physical Chemistry Chemical Physics, 2014, 16, 19841-19847.	2.8	161
21	Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO ₂ to formate. Journal of Materials Chemistry A, 2016, 4, 13746-13753.	10.3	160
22	Advanced Materials for Zincâ€Based Flow Battery: Development and Challenge. Advanced Materials, 2019, 31, e1902025.	21.0	160
23	Anode for Zinc-Based Batteries: Challenges, Strategies, and Prospects. ACS Energy Letters, 2021, 6, 2765-2785.	17.4	159
24	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	2.8	158
25	A Long Cycle Life, Selfâ€Healing Zinc–lodine Flow Battery with High Power Density. Angewandte Chemie - International Edition, 2018, 57, 11171-11176.	13.8	150
26	A Highly Ionâ€ S elective Zeolite Flake Layer on Porous Membranes for Flow Battery Applications. Angewandte Chemie - International Edition, 2016, 55, 3058-3062.	13.8	148
27	Advanced Charged Sponge‣ike Membrane with Ultrahigh Stability and Selectivity for Vanadium Flow Batteries. Advanced Functional Materials, 2016, 26, 210-218.	14.9	139
28	Progress and Perspectives of Flow Battery Technologies. Electrochemical Energy Reviews, 2019, 2, 492-506.	25.5	138
29	Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Materials, 2021, 38, 590-598.	18.0	135
30	Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life. Nature Communications, 2018, 9, 3731.	12.8	133
31	Phase Inversion: A Universal Method to Create Highâ€Performance Porous Electrodes for Nanoparticleâ€Based Energy Storage Devices. Advanced Functional Materials, 2016, 26, 8427-8434.	14.9	132
32	Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nature Communications, 2020, 11, 13.	12.8	127
33	Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application. Energy and Environmental Science, 2013, 6, 776.	30.8	123
34	Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery. ACS Applied Materials & Interfaces, 2015, 7, 19446-19454.	8.0	123
35	Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density. ACS Applied Materials & Interfaces, 2017, 9, 4626-4633.	8.0	122
36	The next generation vanadium flow batteries with high power density – a perspective. Physical Chemistry Chemical Physics, 2018, 20, 23-35.	2.8	121

#	Article	IF	CITATIONS
37	Toward a Low-Cost Alkaline Zinc-Iron Flow Battery with a Polybenzimidazole Custom Membrane for Stationary Energy Storage. IScience, 2018, 3, 40-49.	4.1	119
38	Porous V ₂ O ₅ yolk–shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance. Journal of Materials Chemistry A, 2020, 8, 5186-5193.	10.3	119
39	Ultrathin Bismuth Nanosheets as a Highly Efficient CO ₂ Reduction Electrocatalyst. ChemSusChem, 2018, 11, 848-853.	6.8	116
40	A Low ost Neutral Zinc–Iron Flow Battery with High Energy Density for Stationary Energy Storage. Angewandte Chemie - International Edition, 2017, 56, 14953-14957.	13.8	115
41	Highly Stable Anion Exchange Membranes with Internal Crossâ€Linking Networks. Advanced Functional Materials, 2015, 25, 2583-2589.	14.9	114
42	VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties. Nano Energy, 2018, 47, 340-352.	16.0	113
43	Y-Doped Na ₃ V ₂ (PO ₄) ₂ F ₃ compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties. Journal of Materials Chemistry A, 2017, 5, 10928-10935.	10.3	109
44	High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy and Environmental Science, 2016, 9, 2319-2325.	30.8	108
45	Morphology changes of polyvinylidene fluoride membrane under different phase separation mechanisms. Journal of Membrane Science, 2008, 320, 477-482.	8.2	106
46	Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. Journal of Energy Chemistry, 2018, 27, 1597-1617.	12.9	104
47	Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 15314-15323.	10.3	101
48	Development and perspective in vanadium flow battery modeling. Applied Energy, 2014, 132, 254-266.	10.1	99
49	Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. Journal of Catalysis, 2018, 357, 154-162.	6.2	96
50	Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nature Communications, 2021, 12, 3409.	12.8	94
51	Selective Electrochemical Reduction of Carbon Dioxide Using Cu Based Metal Organic Framework for CO ₂ Capture. ACS Applied Materials & Interfaces, 2018, 10, 2480-2489.	8.0	93
52	Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries. Journal of Power Sources, 2015, 286, 73-81.	7.8	92
53	1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 5965-5972.	10.3	92
54	Poly (ether etherÂketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. Journal of Membrane Science, 2017, 530, 125-131.	8.2	92

#	Article	IF	CITATIONS
55	Cageâ€Like Porous Carbon with Superhigh Activity and Br ₂ â€Complexâ€Entrapping Capability for Bromineâ€Based Flow Batteries. Advanced Materials, 2017, 29, 1605815.	21.0	88
56	Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability. Physical Chemistry Chemical Physics, 2013, 15, 1766-1771.	2.8	87
57	A three-dimensional model for thermal analysis in a vanadium flow battery. Applied Energy, 2014, 113, 1675-1685.	10.1	86
58	Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode. Scientific Reports, 2015, 5, 14949.	3.3	86
59	Development of carbon coated membrane for zinc/bromine flow battery with high power density. Journal of Power Sources, 2013, 227, 41-47.	7.8	83
60	Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8742-8750.	8.0	83
61	Zn electrode with a layer of nanoparticles for selective electroreduction of CO ₂ to formate in aqueous solutions. Journal of Materials Chemistry A, 2016, 4, 16670-16676.	10.3	81
62	A high power density single flow zinc–nickel battery with three-dimensional porous negative electrode. Journal of Power Sources, 2013, 241, 196-202.	7.8	80
63	Poly(vinylidene fluoride) porous membranes precipitated in water/ethanol dual-coagulation bath: The relationship between morphology and performance in vanadium flow battery. Journal of Power Sources, 2014, 249, 84-91.	7.8	80
64	Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Scientific Reports, 2015, 5, 8255.	3.3	80
65	Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application. Energy Storage Materials, 2018, 10, 40-47.	18.0	80
66	Anionâ€Conductive Membranes with Ultralow Vanadium Permeability and Excellent Performance in Vanadium Flow Batteries. ChemSusChem, 2013, 6, 328-335.	6.8	79
67	Bimodal highly ordered mesostructure carbon with high activity for Br2/Brâ^ redox couple in bromine based batteries. Nano Energy, 2016, 21, 217-227.	16.0	79
68	Ion conducting membranes for aqueous flow battery systems. Chemical Communications, 2018, 54, 7570-7588.	4.1	79
69	Aqueous Flow Batteries: Research and Development. Chemistry - A European Journal, 2019, 25, 1649-1664.	3.3	79
70	Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-power applications. Journal of Energy Chemistry, 2021, 55, 361-390.	12.9	79
71	SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations. Journal of Materials Chemistry, 2012, 22, 20057.	6.7	78
72	A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density. Chemical Communications, 2019, 55, 4801-4804.	4.1	78

#	Article	IF	CITATIONS
73	Long Cycle Life Lithium Metal Batteries Enabled with Upright Lithium Anode. Advanced Functional Materials, 2019, 29, 1806752.	14.9	78
74	Ultrafast and Stable Liâ€(De)intercalation in a Large Single Crystal Hâ€Nb ₂ O ₅ Anode via Optimizing the Homogeneity of Electron and Ion Transport. Advanced Materials, 2020, 32, e2001001.	21.0	78
75	Scalable and Economic Synthesis of High-Performance Na ₃ V ₂ (PO ₄) ₂ F ₃ by a Solvothermal–Ball-Milling Method. ACS Energy Letters, 2019, 4, 1565-1571.	17.4	75
76	Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application. Journal of Membrane Science, 2018, 553, 25-31.	8.2	74
77	The Challenge of Lithium Metal Anodes for Practical Applications. Small Methods, 2019, 3, 1800551.	8.6	74
78	Endogenous Symbiotic Li ₃ N/Cellulose Skin to Extend the Cycle Life of Lithium Anode. Angewandte Chemie - International Edition, 2021, 60, 11718-11724.	13.8	74
79	Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane. Journal of the American Chemical Society, 2021, 143, 13135-13144.	13.7	73
80	Porous poly (ether sulfone) membranes with tunable morphology: Fabrication and their application for vanadium flow battery. Journal of Power Sources, 2013, 233, 202-208.	7.8	71
81	Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density. Journal of Energy Chemistry, 2018, 27, 1292-1303.	12.9	69
82	Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery. Journal of Power Sources, 2016, 324, 402-411.	7.8	68
83	A Long Cycle Life, Selfâ€Healing Zinc–lodine Flow Battery with High Power Density. Angewandte Chemie, 2018, 130, 11341-11346.	2.0	67
84	All-NASICON LVP-LTP aqueous lithium ion battery with excellent stability and low-temperature performance. Electrochimica Acta, 2018, 278, 279-289.	5.2	67
85	A Boron Nitride Nanosheets Composite Membrane for a Longâ€Life Zincâ€Based Flow Battery. Angewandte Chemie - International Edition, 2020, 59, 6715-6719.	13.8	67
86	Solventâ€Induced Rearrangement of Ionâ€Transport Channels: A Way to Create Advanced Porous Membranes for Vanadium Flow Batteries. Advanced Functional Materials, 2017, 27, 1604587.	14.9	66
87	A low cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery. Journal of Membrane Science, 2017, 542, 1-7.	8.2	66
88	Li ₈ NaRb ₃ (SO ₄) ₆ ·2H ₂ O as a new sulfate deep-ultraviolet nonlinear optical material. Journal of Materials Chemistry C, 2018, 6, 12240-12244.	5.5	66
89	A Coralâ€Like FeP@NC Anode with Increasing Cycle Capacity for Sodiumâ€Ion and Lithiumâ€Ion Batteries Induced by Particle Refinement. Angewandte Chemie - International Edition, 2021, 60, 25013-25019.	13.8	66
90	Naphthaleneâ€based poly(arylene ether ketone) copolymers containing sulfobutyl pendant groups for proton exchange membranes. Journal of Polymer Science Part A, 2009, 47, 5772-5783.	2.3	64

#	Article	IF	CITATIONS
91	Phenyleneâ€Bridged Bispyridinium with High Capacity and Stability for Aqueous Flow Batteries. Advanced Materials, 2021, 33, e2005839.	21.0	63
92	Steam-Etched Spherical Carbon/Sulfur Composite with High Sulfur Capacity and Long Cycle Life for Li/S Battery Application. ACS Applied Materials & Interfaces, 2015, 7, 3590-3599.	8.0	62
93	Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23182-23189.	8.0	62
94	Trithiocyanuric acid derived g–C3N4 for anchoring the polysulfide in Li–S batteries application. Journal of Energy Chemistry, 2020, 43, 71-77.	12.9	61
95	Polysulfide Stabilization: A Pivotal Strategy to Achieve High Energy Density Li–S Batteries with Long Cycle Life. Advanced Functional Materials, 2018, 28, 1704987.	14.9	60
96	Improving the electrochemical performance of Na 3 V 2 (PO 4) 3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochimica Acta, 2017, 238, 288-297.	5.2	59
97	Cost, performance prediction and optimization of a vanadium flow battery by machine-learning. Energy and Environmental Science, 2020, 13, 4353-4361.	30.8	59
98	A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy and Environmental Science, 2021, 14, 4077-4084.	30.8	58
99	A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications. Journal of Materials Chemistry A, 2014, 2, 9524.	10.3	57
100	Rational design of a nested pore structure sulfur host for fast Li/S batteries with a long cycle life. Journal of Materials Chemistry A, 2016, 4, 1653-1662.	10.3	57
101	Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications. Journal of Membrane Science, 2019, 586, 202-210.	8.2	56
102	Composite porous membranes with an ultrathin selective layer for vanadium flow batteries. Chemical Communications, 2014, 50, 4596-4599.	4.1	55
103	The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium. Journal of Power Sources, 2014, 271, 1-7.	7.8	55
104	Free-Standing Thin Webs of Activated Carbon Nanofibers by Electrospinning for Rechargeable Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 1937-1942.	8.0	54
105	Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na ₃ V ₂ (PO ₄) ₃ for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 4209-4218.	10.3	54
106	Membranes with Wellâ€Defined Selective Layer Regulated by Controlled Solvent Diffusion for High Power Density Flow Battery. Advanced Energy Materials, 2020, 10, 2001382.	19.5	54
107	Rational design and synthesis of LiTi ₂ (PO ₄) _{3â^'x} F _x anode materials for high-performance aqueous lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 593-599.	10.3	53
108	Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule, 2022, 6, 884-905.	24.0	53

#	Article	IF	CITATIONS
109	Crosslinkable sulfonated poly (diallyl-bisphenol ether ether ketone) membranes for vanadium redox flow battery application. Journal of Power Sources, 2012, 217, 309-315.	7.8	52
110	Porous polyetherimide membranes with tunable morphology for lithium-ion battery. Journal of Membrane Science, 2018, 565, 42-49.	8.2	52
111	Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery. Journal of Membrane Science, 2020, 605, 118108.	8.2	52
112	Investigation on the performance evaluation method of flow batteries. Journal of Power Sources, 2014, 266, 145-149.	7.8	51
113	Magnesium/Lithium-Ion Hybrid Battery with High Reversibility by Employing NaV ₃ O ₈ ·1.69H ₂ O Nanobelts as a Positive Electrode. ACS Applied Materials & Interfaces, 2018, 10, 21313-21320.	8.0	51
114	Highly stable aromatic poly (ether sulfone) composite ion exchange membrane for vanadium flow battery. Journal of Membrane Science, 2017, 541, 465-473.	8.2	50
115	Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application. Journal of Membrane Science, 2014, 454, 478-487.	8.2	49
116	Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices. Nano Energy, 2017, 39, 418-428.	16.0	49
117	Electrode Design for High-Performance Sodium-Ion Batteries: Coupling Nanorod-Assembled Na ₃ V ₂ (PO ₄) ₃ @C Microspheres with a 3D Conductive Charge Transport Network. ACS Applied Materials & Interfaces, 2020, 12, 13869-13877.	8.0	49
118	Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Materials, 2020, 27, 327-332.	18.0	49
119	Layer-by-Layer Assembled C/S Cathode with Trace Binder for Li–S Battery Application. ACS Applied Materials & Interfaces, 2015, 7, 25002-25006.	8.0	48
120	A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer. Nanoscale, 2016, 8, 1580-1587.	5.6	48
121	The catalytic effect of bismuth for VO 2 + /VO 2+ and V 3+ /V 2+ redox couples in vanadium flow batteries. Journal of Energy Chemistry, 2017, 26, 1-7.	12.9	48
122	A beryllium-free deep-UV nonlinear optical material CsNaMgP ₂ O ₇ with honeycomb-like topological layers. Journal of Materials Chemistry C, 2018, 6, 3910-3916.	5.5	48
123	Low-Cost Room-Temperature Synthesis of NaV ₃ O ₈ ·1.69H ₂ O Nanobelts for Mg Batteries. ACS Applied Materials & Interfaces, 2018, 10, 4757-4766.	8.0	48
124	Advanced porous membranes with slit-like selective layer for flow battery. Nano Energy, 2018, 54, 73-81.	16.0	48
125	A Bi-doped Li ₃ V ₂ (PO ₄) ₃ /C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries. Dalton Transactions, 2015, 44, 17579-17586.	3.3	46
126	Polypyrrole modified porous poly(ether sulfone) membranes with high performance for vanadium flow batteries. Journal of Materials Chemistry A, 2016, 4, 12955-12962.	10.3	46

#	Article	lF	CITATIONS
127	A TiN Nanorod Array 3D Hierarchical Composite Electrode for Ultrahighâ€Powerâ€Density Bromineâ€Based Flow Batteries. Advanced Materials, 2019, 31, e1904690.	21.0	46
128	N-Doped Nanoporous Carbon from Biomass as a Highly Efficient Electrocatalyst for the CO ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5249-5255.	6.7	46
129	Morphology and Electrochemical Properties of Perfluorosulfonic Acid Ionomers for Vanadium Flow Battery Applications: Effect of Sideâ€Chain Length. ChemSusChem, 2013, 6, 1262-1269.	6.8	45
130	Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries. Electrochimica Acta, 2015, 164, 307-314.	5.2	45
131	Relationship between activity and structure of carbon materials for Br ₂ /Br ^{â^'} in zinc bromine flow batteries. RSC Advances, 2016, 6, 40169-40174.	3.6	44
132	Solvent resistant nanofiltration membranes based on crosslinked polybenzimidazole. RSC Advances, 2016, 6, 16925-16932.	3.6	44
133	From zeolite-type metal organic framework to porous nano-sheet carbon: High activity positive electrode material for bromine-based flow batteries. Nano Energy, 2018, 44, 240-247.	16.0	44
134	Bi-Modified Zn Catalyst for Efficient CO ₂ Electrochemical Reduction to Formate. ACS Sustainable Chemistry and Engineering, 2019, 7, 15190-15196.	6.7	44
135	Highly selective charged porous membranes with improved ion conductivity. Nano Energy, 2018, 48, 353-360.	16.0	43
136	Organic Electrolytes for pHâ€Neutral Aqueous Organic Redox Flow Batteries. Advanced Functional Materials, 2022, 32, 2108777.	14.9	43
137	Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode. Electrochimica Acta, 2014, 145, 109-115.	5.2	42
138	Advanced Porous Membranes with Tunable Morphology Regulated by Ionic Strength of Nonsolvent for Flow Battery. ACS Applied Materials & amp; Interfaces, 2019, 11, 24107-24113.	8.0	42
139	N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries. Energy Storage Materials, 2021, 36, 417-426.	18.0	42
140	Multifunctional Carbon Felt Electrode with Nâ€Rich Defects Enables a Longâ€Cycle Zincâ€Bromine Flow Battery with Ultrahigh Power Density. Advanced Functional Materials, 2021, 31, 2102913.	14.9	42
141	Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1967-1978.	2.1	41
142	Flow field design and optimization of high power density vanadium flow batteries: A novel trapezoid flow battery. AICHE Journal, 2018, 64, 782-795.	3.6	41
143	Design and synthesis of a free-standing carbon nano-fibrous web electrode with ultra large pores for high-performance vanadium flow batteries. RSC Advances, 2017, 7, 45932-45937.	3.6	40
144	Fast kinetics of Mg ²⁺ /Li ⁺ hybrid ions in a polyanion Li ₃ V ₂ (PO ₄) ₃ cathode in a wide temperature range. Journal of Materials Chemistry A, 2019, 7, 9968-9976.	10.3	40

#	Article	IF	CITATIONS
145	Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO ₄ F nanoplates for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 24201-24209.	10.3	39
146	Opportunities and challenges of organic flow battery for electrochemical energy storage technology. Journal of Energy Chemistry, 2022, 67, 621-639.	12.9	39
147	Performance gains in single flow zinc–nickel batteries through novel cell configuration. Electrochimica Acta, 2013, 105, 618-621.	5.2	38
148	Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application. Journal of Power Sources, 2015, 274, 1126-1134.	7.8	38
149	Synthesis and electrochemical properties of Li ₃ V ₂ (P _{1â^x} B _x O ₄) ₃ /C cathode materials. Journal of Materials Chemistry A, 2015, 3, 19469-19475.	10.3	37
150	Ion/Molecule-selective transport nanochannels of membranes for redox flow batteries. Energy Storage Materials, 2021, 34, 648-668.	18.0	37
151	Act in contravention: a non-planar coupled electrode design utilizing "tip effect―for ultra-high areal capacity, long cycle life zinc-based batteries. Science Bulletin, 2021, 66, 889-896.	9.0	37
152	Sulfonated poly(ether ether sulfone) copolymers for proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2007, 104, 1443-1450.	2.6	36
153	In Situ Defectâ€Free Vertically Aligned Layered Double Hydroxide Composite Membrane for High Areal Capacity and Long ycle Zincâ€Based Flow Battery. Advanced Functional Materials, 2021, 31, 2102167.	14.9	36
154	High-performance PBI membranes for flow batteries: from the transport mechanism to the pilot plant. Energy and Environmental Science, 2022, 15, 1594-1600.	30.8	36
155	Mechanism and transfer behavior of ions in Nafion membranes under alkaline media. Journal of Membrane Science, 2018, 566, 8-14.	8.2	35
156	A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device. Energy Storage Materials, 2021, 35, 687-694.	18.0	35
157	Synthesis and characterization of a series of SPEEK/TiO ₂ hybrid membranes for direct methanol fuel cell. Journal of Applied Polymer Science, 2008, 109, 1057-1062.	2.6	34
158	Application and degradation mechanism of polyoxadiazole based membrane for vanadium flow batteries. Journal of Membrane Science, 2015, 488, 194-202.	8.2	34
159	Dramatic performance gains of a novel circular vanadium flow battery. Journal of Power Sources, 2015, 277, 104-109.	7.8	34
160	Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery. Scientific Reports, 2014, 4, 4016.	3.3	34
161	Advanced charged porous membranes with flexible internal crosslinking structures for vanadium flow batteries. Journal of Materials Chemistry A, 2017, 5, 6193-6199.	10.3	34
162	Superlight Adsorbent Sponges Based on Graphene Oxide Cross-Linked with Poly(vinyl alcohol) for Continuous Flow Adsorption. ACS Applied Materials & Interfaces, 2018, 10, 21672-21680.	8.0	34

#	Article	IF	CITATIONS
163	"Giving comes before receivingâ€: High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor. Nano Energy, 2019, 66, 104175.	16.0	34
164	Controllable Design Coupled with Finite Element Analysis of Lowâ€Tortuosity Electrode Architecture for Advanced Sodiumâ€ion Batteries with Ultraâ€High Mass Loading. Advanced Energy Materials, 2021, 11, 2003725.	19.5	34
165	Morphology and performance of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend porous membranes for vanadium flow battery application. RSC Advances, 2014, 4, 40400-40406.	3.6	33
166	Fabrication of a nano-Li ⁺ -channel interlayer for high performance Li–S battery application. RSC Advances, 2015, 5, 26273-26280.	3.6	33
167	A Venus-flytrap-inspired pH-responsive porous membrane with internal crosslinking networks. Journal of Materials Chemistry A, 2017, 5, 25555-25561.	10.3	32
168	Tuning the gas separation performance of fluorinated and sulfonated PEEK membranes by incorporation of zeolite 4A. Journal of Applied Polymer Science, 2018, 135, 45952.	2.6	32
169	Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries. Applied Energy, 2019, 235, 495-508.	10.1	32
170	Rechargeable aqueous zinc–bromine batteries: an overview and future perspectives. Physical Chemistry Chemical Physics, 2021, 23, 26070-26084.	2.8	32
171	Solvent resistant nanofiltration membrane based on polybenzimidazole. Separation and Purification Technology, 2015, 142, 299-306.	7.9	31
172	Hydrophilic poly(vinylidene fluoride) porous membrane with well connected ion transport networks for vanadium flow battery. Journal of Power Sources, 2015, 298, 228-235.	7.8	31
173	Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. Journal of Power Sources, 2016, 326, 203-210.	7.8	31
174	Practical Challenges in Employing Graphene for Lithium-Ion Batteries and Beyond. Small Methods, 2017, 1, 1700099.	8.6	31
175	Multi-functional nanowall arrays with unrestricted Li ⁺ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 22958-22965.	10.3	31
176	Recent Development in Composite Membranes for Flow Batteries. ChemSusChem, 2020, 13, 3805-3819.	6.8	31
177	A high potential biphenol derivative cathode: toward a highly stable air-insensitive aqueous organic flow battery. Science Bulletin, 2021, 66, 457-463.	9.0	31
178	Tailoring interfacial Zn2+ coordination via a robust cation conductive film enables high performance zinc metal battery. Energy Storage Materials, 2022, 49, 380-389.	18.0	31
179	Ultrathin free-standing electrospun carbon nanofibers web as the electrode of the vanadium flow batteries. Journal of Energy Chemistry, 2017, 26, 730-737.	12.9	29
180	Highly Active Hollow Porous Carbon Spheres@Graphite Felt Composite Electrode for High Power Density Vanadium Flow Batteries. Advanced Functional Materials, 2022, 32, .	14.9	29

#	Article	IF	CITATIONS
181	Novel sulfonated poly(ether ether ketone ketone) derived from bisphenol S. Journal of Applied Polymer Science, 2004, 94, 1569-1574.	2.6	28
182	Performance and potential problems of high power density zinc–nickel single flow batteries. RSC Advances, 2015, 5, 1772-1776.	3.6	28
183	Facile construction of nanoscale laminated Na ₃ V ₂ (PO ₄) ₃ for a high-performance sodium ion battery cathode. Journal of Materials Chemistry A, 2016, 4, 19170-19178.	10.3	28
184	The porous membrane with tunable performance for vanadium flow battery: The effect of charge. Journal of Power Sources, 2017, 342, 327-334.	7.8	28
185	Tuning the electrocatalytic properties of a Cu electrode with organic additives containing amine group for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 5453-5462.	10.3	28
186	Advanced scalable zeolite "ions-sieving―composite membranes with high selectivity. Journal of Membrane Science, 2020, 595, 117569.	8.2	28
187	Lowâ€Cost Titanium–Bromine Flow Battery with Ultrahigh Cycle Stability for Gridâ€ S cale Energy Storage. Advanced Materials, 2020, 32, e2005036.	21.0	28
188	Highly stable membranes based on sulfonated fluorinated poly(ether ether ketone)s with bifunctional groups for vanadium flow battery application. Polymer Chemistry, 2015, 6, 5385-5392.	3.9	27
189	A Langbeinite-Type Yttrium Phosphate LiCs ₂ Y ₂ (PO ₄) ₃ . Inorganic Chemistry, 2018, 57, 13087-13091.	4.0	26
190	A Highly Ionâ€Selective Zeolite Flake Layer on Porous Membranes for Flow Battery Applications. Angewandte Chemie, 2016, 128, 3110-3114.	2.0	25
191	LiCr(MoO ₄) ₂ : a new high specific capacity cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 567-573.	10.3	25
192	High-Performance Solar Redox Flow Battery toward Efficient Overall Splitting of Hydrogen Sulfide. ACS Energy Letters, 2020, 5, 597-603.	17.4	25
193	A Bunch-Like Tertiary Amine Grafted Polysulfone Membrane for VRFBs with Simultaneously High Proton Conductivity and Low Vanadium Ion Permeability. Macromolecular Rapid Communications, 2017, 38, 1600710.	3.9	24
194	High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy, 2022, 96, 107120.	16.0	24
195	Ion conductive membranes for flow batteries: Design and ions transport mechanism. Journal of Membrane Science, 2021, 632, 119355.	8.2	23
196	Quasiâ€Stable Electroless Ni–P Deposition: A Pivotal Strategy to Create Flexible Li–S Pouch Batteries with Bench Mark Cycle Stability and Specific Capacity. Advanced Functional Materials, 2018, 28, 1707272.	14.9	22
197	A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na ₄ V ₂ (PO ₄) ₃ as the cathode material. Journal of Materials Chemistry A, 2020, 8, 23368-23375.	10.3	22
198	Revisiting of Tetragonal NaVPO ₄ F: A High Energy Density Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 30510-30519.	8.0	22

#	Article	IF	CITATIONS
199	A highly stable membrane with hierarchical structure for wide pH range flow batteries. Journal of Energy Chemistry, 2021, 56, 80-86.	12.9	22
200	A non-ionic membrane with high performance for alkaline zinc-iron flow battery. Journal of Membrane Science, 2021, 618, 118585.	8.2	22
201	Impact of Proton Concentration on Equilibrium Potential and Polarization of Vanadium Flow Batteries. ChemPlusChem, 2015, 80, 382-389.	2.8	21
202	A new phase-matchable nonlinear optical silicate: Rb ₂ ZnSi ₃ O ₈ . Journal of Materials Chemistry C, 2017, 5, 11025-11029.	5.5	21
203	Li3Cr(MoO4)3: a NASICON-type high specific capacity cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 19107-19112.	10.3	21
204	A Complexing Agent to Enable a Wideâ€Temperature Range Bromineâ€Based Flow Battery for Stationary Energy Storage. Advanced Functional Materials, 2021, 31, 2100133.	14.9	21
205	A low-cost bromine-fixed additive enables a high capacity retention zinc-bromine batteries. Journal of Energy Chemistry, 2022, 65, 89-93.	12.9	21
206	A membrane-free interfacial battery with high energy density. Chemical Communications, 2018, 54, 11626-11629.	4.1	20
207	A Costâ€Effective Mixed Matrix Polyethylene Porous Membrane for Long ycle High Power Density Alkaline Zincâ€Based Flow Batteries. Advanced Functional Materials, 2019, 29, 1901674.	14.9	20
208	Organic Electrode Materials for Non-aqueous K-Ion Batteries. Transactions of Tianjin University, 2021, 27, 1-23.	6.4	19
209	A multi-electron transfer ferrocene derivative positive redox moiety with improved solubility and potential. Chemical Communications, 2018, 54, 8419-8422.	4.1	18
210	Abrupt Structural Transformation in Asymmetric ABPO ₄ F (A = K, Rb, Cs). Inorganic Chemistry, 2019, 58, 1733-1737.	4.0	18
211	Porous Membrane with High Selectivity for Alkaline Quinone-Based Flow Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48533-48541.	8.0	18
212	Highly stable titanium–manganese single flow batteries for stationary energy storage. Journal of Materials Chemistry A, 2021, 9, 12606-12611.	10.3	18
213	Mixing Halogens To Assemble an Allâ€Inorganic Layered Perovskite with Warm Whiteâ€Light Emission. Chemistry - A European Journal, 2018, 24, 9243-9246.	3.3	17
214	Solvent treatment: the formation mechanism of advanced porous membranes for flow batteries. Journal of Materials Chemistry A, 2018, 6, 15569-15576.	10.3	17
215	Highly selective core-shell structural membrane with cage-shaped pores for flow battery. Energy Storage Materials, 2019, 17, 325-333.	18.0	17
216	Atomic-Dispersed Coordinated Unsaturated Nickel–Nitrogen Sites in Hollow Carbon Spheres for the Efficient Electrochemical CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5437-5444.	6.7	17

#	Article	IF	CITATIONS
217	Low-cost all-iron flow battery with high performance towards long-duration energy storage. Journal of Energy Chemistry, 2022, 73, 445-451.	12.9	17
218	"Threeâ€inâ€One:―A New 3D Hybrid Structure of Li ₃ V ₂ (PO ₄) ₃ @ Biomorphic Carbon for Highâ€Rate and Lowâ€Temperature Lithium Ion Batteries. Advanced Materials Interfaces, 2017, 4, 1700686.	3.7	16
219	Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery. Journal of Membrane Science, 2021, 620, 118947.	8.2	16
220	Lamella-like electrode with high Br2-entrapping capability and activity enabled by adsorption and spatial confinement effects for bromine-based flow battery. Science Bulletin, 2022, 67, 1362-1371.	9.0	16
221	Non-aqueous lithium bromine battery of high energy density with carbon coated membrane. Journal of Energy Chemistry, 2017, 26, 639-646.	12.9	15
222	Anchor and activate sulfide with LiTi ₂ (PO ₄) _{2.88} F _{0.12} nano spheres for lithium sulfur battery application. Journal of Materials Chemistry A, 2018, 6, 7639-7648.	10.3	15
223	Membranes Fabricated by Solvent treatment for Flow Battery: Effects of initial structures and intrinsic properties. Journal of Membrane Science, 2019, 577, 212-218.	8.2	15
224	Machine learning for flow batteries: opportunities and challenges. Chemical Science, 2022, 13, 4740-4752.	7.4	15
225	A High Energy Density Bromine-Based Flow Battery with Two-Electron Transfer. ACS Energy Letters, 2022, 7, 1034-1039.	17.4	15
226	Affinity Laminated Chromatography Membrane Builtâ€in Electrodes for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1903233.	19.5	14
227	Stop Four Gaps with One Bush: Versatile Hierarchical Polybenzimidazole Nanoporous Membrane for Highly Durable Li–S Battery. ACS Applied Materials & Interfaces, 2020, 12, 55809-55819.	8.0	14
228	Highly stable polysulfone solvent resistant nanofiltration membranes with internal cross-linking networks. RSC Advances, 2016, 6, 29570-29575.	3.6	13
229	A Lowâ€Cost Neutral Zinc–Iron Flow Battery with High Energy Density for Stationary Energy Storage. Angewandte Chemie, 2017, 129, 15149-15153.	2.0	13
230	One-pot synthesis of 3D hierarchical porous Li ₃ V ₂ (PO ₄) ₃ /C nanocomposites for high-rate and long-life lithium ion batteries. RSC Advances, 2017, 7, 38415-38423.	3.6	13
231	A novel aqueous Li ⁺ (or Na ⁺)/Br ^{â^'} hybrid-ion battery with super high areal capacity and energy density. Journal of Materials Chemistry A, 2019, 7, 13050-13059.	10.3	13
232	Effect of Electrolyte Additives on the Water Transfer Behavior for Alkaline Zinc–Iron Flow Batteries. ACS Applied Materials & Interfaces, 2020, 12, 51573-51580.	8.0	13
233	Highly Active Ag Nanoparticle Electrocatalysts toward V ²⁺ /V ³⁺ Redox Reaction. ACS Applied Energy Materials, 2021, 4, 3913-3920.	5.1	13
234	Operando surface science methodology reveals surface effect in charge storage electrodes. National Science Review, 2021, 8, nwaa289.	9.5	13

#	Article	IF	CITATIONS
235	Composite membrane with ultra-thin ion exchangeable functional layer: a new separator choice for manganese-based cathode material in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7006-7013.	10.3	12
236	Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method. Journal of Materials Chemistry A, 2019, 7, 22550-22558.	10.3	12
237	A highly stable membrane for vanadium flow batteries (VFBs) enabled by the selective degradation of ionic side chains. Journal of Materials Chemistry A, 2022, 10, 762-771.	10.3	12
238	Progress and Perspective of the Cathode Materials towards Bromine-Based Flow Batteries. Energy Material Advances, 2022, 2022, .	11.0	12
239	Bi ₂ Mn ₄ O ₁₀ : a new mullite-type anode material for lithium-ion batteries. Dalton Transactions, 2018, 47, 7739-7746.	3.3	11
240	The Mystery from Tetragonal NaVPO ₄ F to Monoclinic NaVPO ₄ F: Crystal Presentation, Phase Conversion, and Na‣torage Kinetics. Advanced Energy Materials, 2021, 11, 2100627.	19.5	11
241	Controlled synthesis of pure-phase metastable tetragonal Nb2O5 anode material for high-performance lithium batteries. Journal of Solid State Chemistry, 2021, 299, 122136.	2.9	11
242	Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery. Energy Storage Materials, 2022, 47, 415-423.	18.0	11
243	A â^' 60Â ° C Lowâ€Temperature Aqueous Lithium Ionâ€Bromine Battery with High Power Density Enabled by Electrolyte Design. Advanced Energy Materials, 2022, 12, .	⁹ 19.5	11
244	Morphological investigations of block sulfonated poly(arylene ether ketone) copolymers as potential proton exchange membranes. Polymers for Advanced Technologies, 2011, 22, 2173-2181.	3.2	10
245	Highly symmetric spongy porous poly(ether sulfone) membranes with selective open-cells for vanadium flow battery application. RSC Advances, 2016, 6, 87104-87109.	3.6	10
246	A novel facile and fast hydrothermal-assisted method to synthesize sulfur/carbon composites for high-performance lithium–sulfur batteries. RSC Advances, 2016, 6, 81950-81957.	3.6	10
247	Physical Properties of a Promising Nonlinear Optical Crystal K ₃ Ba ₃ Li ₂ Al ₄ B ₆ O ₂₀ F. Crystal Growth and Design, 2018, 18, 7368-7372.	3.0	10
248	The Effect of Organic Additives on the Activity and Selectivity of CO ₂ Electroreduction: The Role of Functional Groups. ChemSusChem, 2018, 11, 2904-2911.	6.8	10
249	N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF8 as a highly efficient electrocatalyst for CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 320-326.	10.3	10
250	Perspective on organic flow batteries for large-scale energy storage. Current Opinion in Electrochemistry, 2021, 30, 100836.	4.8	10
251	Morphology Selection Kinetics of Li Sphere via Interface Regulation at High Current Density for Pragmatic Li Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	10
252	A data-driven and DFT assisted theoretic guide for membrane design in flow batteries. Journal of Materials Chemistry A, 2021, 9, 14545-14552.	10.3	9

#	Article	IF	CITATIONS
253	A Coralâ€Like FeP@NC Anode with Increasing Cycle Capacity for Sodiumâ€Ion and Lithiumâ€Ion Batteries Induced by Particle Refinement. Angewandte Chemie, 2021, 133, 25217-25223.	2.0	9
254	Dual-Stimuli-Responsive Cross-Linked Graphene Oxide/Poly(vinyl alcohol) Membranes with Anisotropic Liquid Penetration Behaviors. ACS Applied Polymer Materials, 2019, 1, 3413-3421.	4.4	8
255	An all-weather Li/LiV ₂ (PO ₄) ₃ primary battery with improved shelf-life based on the <i>in situ</i> modification of the cathode/electrolyte interface. Journal of Materials Chemistry A, 2020, 8, 16951-16959.	10.3	8
256	Recent development and prospect of membranes for alkaline zinc-iron flow battery. , 2022, 2, 100029.		8
257	The numerical simulation of dynamic performance in the vanadium flow battery. Electrochimica Acta, 2014, 118, 51-57.	5.2	7
258	Preparation of a new type of ion-exchange membrane based on sulfonated poly(ether ether ketone) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
259	Li _{0.93} V _{2.07} BO ₅ : a new nano-rod cathode material for lithium ion batteries. Nanoscale, 2018, 10, 1997-2003.	5.6	6
260	Vapour induced phase inversion: preparing high performance self-standing sponge-like electrodes with a sulfur loading of over 10Âmg cmâ^2. Journal of Materials Chemistry A, 2018, 6, 24066-24070.	10.3	5
261	Special report on the achievements realized by researchers of Chinese Academy of Sciences in the field of energy storage technologies. Journal of Energy Storage, 2018, 18, 285-294.	8.1	5
262	Optical Property of Inorganic Halide Perovskite Hexagonal Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 25044-25054.	3.1	5
263	Nanocage-oriented induction for highly ion-selective sub-1-nanometer channels of membranes. Journal of Materials Chemistry A, 0, , .	10.3	5
264	A Boron Nitride Nanosheets Composite Membrane for a Longâ€Life Zincâ€Based Flow Battery. Angewandte Chemie, 2020, 132, 6781-6785.	2.0	4
265	Macro-scale Turing-shape membranes for energy storage. Cell Reports Physical Science, 2021, 2, 100361.	5.6	4
266	Constructing Phase-Transitional NiS _{<i>x</i>} @Nitrogen-Doped Carbon Cathode Material with High Rate Capability and Cycling Stability for Alkaline Zinc-Based Batteries. ACS Applied Materials & Interfaces, 2021, 13, 19008-19015.	8.0	4
267	The crucial role of parallel and interdigitated flow channels in a trapezoid flow battery. Journal of Power Sources, 2021, 512, 230497.	7.8	4
268	Fluorinated Graphite (FG)-Modified Li–S Batteries with Superhigh Primary Specific Capacity and Improved Cycle Stability. ACS Applied Materials & Interfaces, 2021, 13, 52717-52726.	8.0	4
269	Sb-Doped high-voltage LiCoO ₂ enabled improved structural stability and rate capability for high-performance Li-ion batteries. Chemical Communications, 2022, 58, 5379-5382.	4.1	4
270	The Synthesis and Characterization of a Novel Ternary Polymer Bisphenol A-4,4'-Difluorobenzophenone-bis(p-hydroxylphenyl)-1,4,5,8-naphthalenetetracarboxylic Diimide Monomer. Polymer Bulletin, 2006, 57, 351-358.	3.3	3

#	Article	IF	CITATIONS
271	Going Nano with Confined Effects to Construct Pomegranate-like Cathode for High-Energy and High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28934-28942.	8.0	3
272	High Rate Performance Li ₄ Ti ₅ O ₁₂ /N-doped Carbon/Stainless Steel Mesh Flexible Electrodes Prepared by Electrostatic Spray Deposition for Lithium-ion Capacitors. Chemistry Letters, 2020, 49, 337-340.	1.3	3
273	Zincâ€Based Flow Batteries: Advanced Materials for Zincâ€Based Flow Battery: Development and Challenge (Adv. Mater. 50/2019). Advanced Materials, 2019, 31, 1970356.	21.0	2
274	DICP's 70th Anniversary Special Issue on Advanced Materials for Clean Energy. Advanced Materials, 2019, 31, e1905710.	21.0	2
275	Enabling superior rate capability and reliable sodium ion batteries by employing galvanostatic-potentiostatic operation mode. Journal of Power Sources, 2021, 496, 229834.	7.8	2
276	Mixed Matrix Membranes: A Costâ€Effective Mixed Matrix Polyethylene Porous Membrane for Long ycle High Power Density Alkaline Zincâ€Based Flow Batteries (Adv. Funct. Mater. 29/2019). Advanced Functional Materials, 2019, 29, 1970201.	14.9	1
277	Electrochemical Production of Formic Acid from CO 2 with Cetyltrimethylammonium Bromideâ€Assisted Copperâ€Based Catalysts. ChemSusChem, 2021, 14, 1962-1969.	6.8	1
278	Poly(arylene ether sulfone) Membrane Crosslinked with Biâ€Guanidinium for Vanadium Flow Battery Applications. Macromolecular Chemistry and Physics, 0, , 2100338.	2.2	1
279	Rücktitelbild: A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density (Angew. Chem. 35/2018). Angewandte Chemie, 2018, 130, 11644-11644.	2.0	0
280	Endogenous Symbiotic Li 3 N/Cellulose Skin to Extend the Cycle Life of Lithium Anode. Angewandte Chemie, 2021, 133, 11824-11830.	2.0	0