Cynthia Rosenzweig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6482649/publications.pdf

Version: 2024-02-01

55 papers

8,758 citations

126858 33 h-index 54 g-index

60 all docs

60 does citations

60 times ranked

9246 citing authors

#	Article	IF	CITATIONS
1	Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth System Science Data, 2022, 14, 1795-1809.	3.7	53
2	Accelerating climate research and action in cities through advanced science-policy-practice partnerships. Npj Urban Sustainability, 2021, 1 , .	3.7	12
3	Strong regional influence of climatic forcing datasets on global crop model ensembles. Agricultural and Forest Meteorology, 2021, 300, 108313.	1.9	17
4	Finding and fixing food system emissions: the double helix of science and policy. Environmental Research Letters, 2021, 16, 061002.	2.2	16
5	Greenhouse gas emissions from food systems: building the evidence base. Environmental Research Letters, 2021, 16, 065007.	2.2	119
6	Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment. Climatic Change, 2021, 168, 1.	1.7	22
7	Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2021, 2, 873-885.	6.2	263
8	Burning embers: towards more transparent and robust climate-change risk assessments. Nature Reviews Earth & Environment, 2020, 1, 516-529.	12.2	29
9	Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 2020, 1, 775-782.	6.2	67
10	A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7071-7081.	3.3	63
11	Climate change responses benefit from a global food system approach. Nature Food, 2020, 1, 94-97.	6.2	235
12	Integrated assessment of climate change impacts on crop productivity and income of commercial maize farms in northeast South Africa. Food Security, 2020, 12, 659-678.	2.4	29
13	The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data, 2019, 6, 50.	2.4	57
14	Hydrologic and Agricultural Earth Observations and Modeling for the Water-Food Nexus. Frontiers in Environmental Science, 2019, 7, .	1.5	16
15	New York City Panel on Climate Change 2019 Report Chapter 8: Indicators and Monitoring. Annals of the New York Academy of Sciences, 2019, 1439, 230-279.	1.8	6
16	New York City Panel on Climate Change 2019 Report Chapter 9: Perspectives on a City in a Changing Climate 2008–2018. Annals of the New York Academy of Sciences, 2019, 1439, 280-305.	1.8	4
17	New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought. Annals of the New York Academy of Sciences, 2019, 1439, 30-70.	1.8	21
18	Locking in positive climate responses in cities. Nature Climate Change, 2018, 8, 174-177.	8.1	170

#	Article	IF	Citations
19	City transformations in a 1.5 ŰC warmer world. Nature Climate Change, 2018, 8, 177-181.	8.1	114
20	Coordinating AgMIP data and models across global and regional scales for 1.5ŰC and 2.0ŰC assessments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160455.	1.6	48
21	How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?. European Journal of Agronomy, 2018, 100, 67-75.	1.9	68
22	Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agricultural Systems, 2018, 159, 275-281.	3.2	26
23	Action pathways for transforming cities. Nature Climate Change, 2018, 8, 756-759.	8.1	36
24	Climate shifts within major agricultural seasons for $+1.5$ and $+2.0~{\hat {\sf A}}^{\circ}{\sf C}$ worlds: HAPPI projections and AgMIP modeling scenarios. Agricultural and Forest Meteorology, 2018, 259, 329-344.	1.9	39
25	Biophysical and economic implications for agriculture of +1.5° and +2.0°C global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research, 2018, 76, 17-39.	0.4	49
26	Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155, 240-254.	3.2	403
27	Representing water scarcity in future agricultural assessments. Anthropocene, 2017, 18, 15-26.	1.6	27
28	An AgMIP framework for improved agricultural representation in integrated assessment models. Environmental Research Letters, 2017, 12, 125003.	2.2	54
29	Integrating water supply constraints into irrigated agricultural simulations of California. Environmental Modelling and Software, 2017, 96, 335-346.	1.9	18
30	Assessing inter-sectoral climate change risks: the role of ISIMIP. Environmental Research Letters, 2017, 12, 010301.	2.2	49
31	Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 2017, 10, 1403-1422.	1.3	213
32	Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Climate Change Management, 2017, , 209-223.	0.6	2
33	The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3493-3515.	1.3	31
34	Regional disparities in the beneficial effects of rising CO2 concentrations on crop waterÂproductivity. Nature Climate Change, 2016, 6, 786-790.	8.1	190
35	Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 2016, 198, 80-92.	2.3	47
36	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	8.1	352

#	Article	IF	CITATIONS
37	Assessing Impacts of Climate Change on Food Security Worldwide. Eos, 2016, 97, .	0.1	21
38	New York City Panel on Climate Change 2015 Report Introduction. Annals of the New York Academy of Sciences, 2015, 1336, 3-5.	1.8	11
39	AgMIP's Transdisciplinary Agricultural Systems Approach to Regional Integrated Assessment of Climate Impacts, Vulnerability, and Adaptation. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 27-44.	0.4	20
40	Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 101-145.	0.4	41
41	Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 279-295.	0.4	2
42	Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 2015, 21, 911-925.	4.2	387
43	Hurricane Sandy and adaptation pathways in New York: Lessons from a first-responder city. Global Environmental Change, 2014, 28, 395-408.	3.6	205
44	Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.	3.3	795
45	How do various maize crop models vary in their responses to climate change factors?. Global Change Biology, 2014, 20, 2301-2320.	4.2	525
46	Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3268-3273.	3.3	1,649
47	Detection and attribution of anthropogenic climate change impacts. Wiley Interdisciplinary Reviews: Climate Change, 2013, 4, 121-150.	3.6	59
48	Developing coastal adaptation to climate change in the New York City infrastructure-shed: process, approach, tools, and strategies. Climatic Change, 2011, 106, 93-127.	1.7	180
49	CLIMATE RISK INFORMATION. Annals of the New York Academy of Sciences, 2010, 1196, 147-228.	1.8	45
50	Crop response to elevated CO2 and world food supply. European Journal of Agronomy, 2007, 26, 215-223.	1.9	244
51	Biodiversity, Biosphere Reserves, and the Big Apple: A Study of the New York Metropolitan Region. Annals of the New York Academy of Sciences, 2004, 1023, 105-124.	1.8	13
52	Testing CERES–Wheat with Freeâ€Air Carbon Dioxide Enrichment (FACE) Experiment Data: CO2 and Water Interactions. Agronomy Journal, 1999, 91, 247-255.	0.9	85
53	Potential impact of climate change on world food supply. Nature, 1994, 367, 133-138.	13.7	1,460
54	Disasters and Risk in Cities. , 0, , 61-98.		18

ARTICLE IF CITATIONS

55 Economics, Finance, and the Private Sector., 0, , 225-254. 2