Yoshio Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6482248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of a sugar-immobilized fluorescent PMMA shell on a Ni core particle via soap-free emulsion polymerization. Colloid and Polymer Science, 2022, 300, 213-221.	2.1	2
2	Development of methods for fabricating nanoparticles composed of magnetite, gold, and silica toward diagnostic imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128773.	4.7	7
3	Active Sites on Zn _{<i>x</i>} Zr _{1–<i>x</i>} O _{2–<i>x</i>} Solid Solution Catalysts for CO ₂ -to-Methanol Hydrogenation. ACS Catalysis, 2022, 12, 7748-7759.	11.2	37
4	Electrolytic synthesis of metallic zinc nanoparticles. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	4
5	Stabilization of Size-Controlled BaTiO ₃ Nanocubes via Precise Solvothermal Crystal Growth and Their Anomalous Surface Compositional Reconstruction. ACS Omega, 2021, 6, 9410-9425.	3.5	12
6	Fabrication and fluorescence imaging properties of indocyanine green-loaded poly(lactic-co-glycolic) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
7	Development of X-ray contrast agents using single nanometer-sized gold nanoparticles and lactoferrin complex and their application in vascular imaging. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111732.	5.0	6
8	Effect of silica-coating on crystal structure and magnetic properties of metallic nickel particles. Advanced Powder Technology, 2021, 32, 4177-4185.	4.1	8
9	Preparation and properties of silica-coated metallic nickel particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127524.	4.7	7
10	Optimizing TiO ₂ through Water-Soluble Ti Complexes as Raw Material for Controlling Particle Size and Distribution of Synthesized BaTiO ₃ Nanocubes. ACS Omega, 2021, 6, 32517-32527.	3.5	5
11	Development of composite nanoparticles composed of silica-coated nanorods and single nanometer-sized gold particles toward a novel X-ray contrast agent. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114716.	3.5	7
12	Synthesis of metallic zinc nanoparticles by electrolysis. Applied Nanoscience (Switzerland), 2020, 10, 3457-3464.	3.1	5
	Supplies of motallie conner papaparticles in aquiague colution by surfactant free reduction and		

13	silica coating. Chemical Papers, 2020, 74, 2813-2820.	2.2	9
14	Preparation of high-concentration colloid solutions of metallic copper particles and their use in metal–metal bonding processes. SN Applied Sciences, 2019, 1, 1.	2.9	4
15	Au nanoparticles coated with chitosan. Colloid and Polymer Science, 2019, 297, 1143-1148.	2.1	1
16	Silica coating of indium phosphide nanoparticles by a sol–gel method and their photobleaching properties. SN Applied Sciences, 2019, 1, 1.	2.9	1
17	Fabrication and dual-modal imaging properties of quantum dot/silica core-shell particles with immobilized single-nanometer-sized gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 162-170.	4.7	2
18	Fabrication of silica/platinum core-shell particles by electroless metal plating. Advanced Powder	4.1	7

Technology, 2019, 30, 829-834. 18

#	Article	IF	CITATIONS
19	Solvothermal synthesis and morphology control of NaNbO3 nanocubes using a reaction medium of water and/or methanol. Journal of Asian Ceramic Societies, 2019, 7, 544-550.	2.3	6
20	Electron Microscopy Observations of the Au Nanorods and Au Nanorod/SiO ₂ Nanocapsules. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66, 210-214.	0.2	0
21	Effects of raw materials on NaNbO ₃ nanocube synthesis via the solvothermal method. Journal of Asian Ceramic Societies, 2019, 7, 36-41.	2.3	9
22	Quantitative analyses of amount and localization of radiosensitizer gold nanoparticles interacting with cancer cells to optimize radiation therapy. Biochemical and Biophysical Research Communications, 2019, 508, 1093-1100.	2.1	11
23	CaF ₂ Nanocrystals Synthesis That Have a Unique Shape. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 202-206.	0.2	1
24	Fabrication of α-alumina by a combination of a hydrothermal process and a seeding technique. Functional Materials Letters, 2018, 11, 1850042.	1.2	6
25	Fabrication and dual imaging properties of quantum dot/silica core-shell particles immobilized with gold nanoparticles. Materials Technology, 2018, 33, 737-747.	3.0	2
26	Synthesis on aggregation of colloidal solutions of ICG-active silica nanoparticles and their application in inâ€vivo fluorescence imaging. Materials Chemistry and Physics, 2018, 220, 201-207.	4.0	4
27	Silica-coating of quantum nanorods by a sol–gel process and their photo-bleaching properties. Journal of Sol-Gel Science and Technology, 2018, 86, 773-781.	2.4	4
28	The Development of Quantum Dot/Silica Particles for Fluorescence Imaging and Medical Diagnostics. , 2018, , 3393-3430.		0
29	Fabrication of palladium/platinum core-shell nanoparticles by electroless metal plating. Materials Protection, 2018, 59, 199-205.	0.9	0
30	Quantitative nano-bio-imaging of cancer disease state. Drug Delivery System, 2018, 33, 179-189.	0.0	0
31	Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion. Biochemical and Biophysical Research Communications, 2017, 484, 318-322.	2.1	11
32	Effect of peptiser species on crystallisation of alumina gel produced by sol–gel process. Advances in Applied Ceramics, 2017, 116, 248-253.	1.1	4
33	Synthesis of nanoparticles composed of silver and copper for metal–metal bonding. Materials Science and Technology, 2017, 33, 1618-1625.	1.6	3
34	Stabilization of silica-coated silver iodide nanoparticles by ethanol-washing. Pigment and Resin Technology, 2016, 45, 99-105.	0.9	1
35	Recent advances in the synthesis of copper-based nanoparticles for metal–metal bonding processes. Journal of Science: Advanced Materials and Devices, 2016, 1, 413-430.	3.1	19
36	Metal–metal bonding process using cuprous oxide nanoparticles. Journal of Materials Research and Technology, 2016, 5, 345-352.	5.8	4

#	Article	IF	CITATIONS
37	Preparation of high-concentration colloidal solution of silica-coated gold nanoparticles and their application to X-ray imaging. Journal of Sol-Gel Science and Technology, 2016, 78, 82-90.	2.4	11
38	Fabrication of quantum dot/silica core–shell particles immobilizing Au nanoparticles and their dual imaging functions. Applied Nanoscience (Switzerland), 2016, 6, 301-307.	3.1	15
39	The Development of Quantum Dot/Silica Particles for Fluorescence Imaging and Medical Diagnostics. , 2016, , 1-38.		0
40	Preparation of Silica-Coated Quantum Dot Nanoparticle Colloid Solutions and Their Application in <i>in-vivo</i> Fluorescence Imaging. Journal of Chemical Engineering of Japan, 2015, 48, 112-117.	0.6	10
41	Direct Immobilization of Gadolinium Complex on Silica Particles and Their MRI Properties. E-Journal of Surface Science and Nanotechnology, 2015, 13, 42-46.	0.4	4
42	Low-Temperature Metal^ ^#8211;Metal Bonding Process Using Leaf-Like Aggregates Composed of CuO Nanoparticles. Journal of Chemical Engineering of Japan, 2015, 48, 1-6.	0.6	5
43	Preparation of Au/silica/poly(ethylene glycol) nanoparticle colloid solution and its use in x-ray imaging process. Nanocomposites, 2015, 1, 83-88.	4.2	12
44	Seeding technique for lowering temperature during synthesis of α-alumina. Journal of Asian Ceramic Societies, 2015, 3, 139-143.	2.3	16
45	<i>In situ</i> observation of water in a fuel cell catalyst using scanning electron microscopy. Microscopy (Oxford, England), 2015, 64, 87-96.	1.5	4
46	Fabrication of ITO particles using a combination of a homogeneous precipitation method and a seeding technique and their electrical conductivity. Journal of Asian Ceramic Societies, 2015, 3, 266-270.	2.3	4
47	Metal-Metal Bonding Properties of Copper Oxide Nanoparticles. E-Journal of Surface Science and Nanotechnology, 2014, 12, 105-108.	0.4	5
48	A metal–metal bonding process using metallic copper nanoparticles produced by reduction of copper oxide nanoparticles. Journal of Materials Research and Technology, 2014, 3, 114-121.	5.8	30
49	Fabrication of barium titanate nanoparticles/poly (methylmethacrylate) composite films by a combination of deposition process and spin-coating technique. Journal of Materials Research and Technology, 2014, 3, 290-295.	5.8	8
50	Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	15
51	Fabrication of TiO2/Pt core–shell particles by electroless metal plating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 448, 88-92.	4.7	9
52	Fabrication of nitrogen-doped titanium oxide/silica core–shell particles and their electrical conductivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 244-249.	4.7	2
53	In-vivo fluorescence imaging technique using colloid solution of multiple quantum dots/silica/poly(ethylene glycol) nanoparticles. Journal of Sol-Gel Science and Technology, 2013, 66, 31-37.	2.4	17
54	Fabrication of hollow particles composed of silica containing gadolinium compound and magnetic resonance imaging using them. Journal of Nanostructure in Chemistry, 2013, 3, 1.	9.1	8

#	Article	IF	CITATIONS
55	X-ray imaging technique using colloid solution of Au/silica core-shell nanoparticles. Journal of Nanostructure in Chemistry, 2013, 3, 1.	9.1	19
56	Interfacial Nanostructure of the Polymer Electrolyte Fuel Cell Catalyst Layer Constructed with Different Ionomer Contents. Japanese Journal of Applied Physics, 2013, 52, 06GD06.	1.5	3
57	Microstructure of metallic copper nanoparticles/metallic disc interface in metal–metal bonding using them. Surface and Interface Analysis, 2013, 45, 1424-1428.	1.8	15
58	Fabrication of transparent self-supporting alumina films by homogeneous precipitation process. Journal of the Ceramic Society of Japan, 2013, 121, 494-497.	1.1	7
59	Low Temperature Synthesis of <i>\hat{I}±</i> -Alumina with a Seeding Technique. , 2013, 2013, 1-5.		6
60	Preparation of Gd Complex-Immobilized Silica Particles and Their Application to MRI. ISRN Nanotechnology, 2013, 2013, 1-6.	1.3	11
61	Preparation of AgI/Silica/Poly(Ethylene Glycol) Nanoparticle Colloid Solution and X-Ray Imaging Using It. ISRN Nanomaterials, 2013, 2013, 1-5.	0.7	9
62	Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging. Advances in Nano Research, 2013, 1, 159-169.	0.9	10
63	Characterization of Polymer Electrolyte Fuel Cells by Neutron Scattering During Operation in a Segmented Electrode Cell. Kobunshi Ronbunshu, 2013, 70, 94-101.	0.2	0
64	Influence of Ionomer/Carbon Ratio on the Performance of a Polymer Electrolyte Fuel Cell. Polymers, 2012, 4, 1645-1656.	4.5	34
65	Development of Silica-Coated Silver Iodide Nanoparticles and Their Biodistribution. Tohoku Journal of Experimental Medicine, 2012, 228, 317-323.	1.2	9
66	Luminescence enhancement of Eu-doped amorphous barium titanate films with crystalline BaTiO3 nanoparticle incorporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 94-97.	4.7	5
67	Synthesis of High Concentration Colloid Solution of Silica-Coated AgI Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 6741-6745.	0.9	3
68	The effect of the Relationship between Ionomer and Carbon in the PEFC Catalyst Layer. ECS Meeting Abstracts, 2012, , .	0.0	0
69	Fabrication and fluorescence properties of multilayered core–shell particles composed of quantum dot, gadolinium compound, and silica. Journal of Materials Science, 2012, 47, 1852-1859.	3.7	11
70	X-Ray Imaging Technique Using Colloid Solution of AgI/Silica/Poly(ethylene glycol) Nanoparticles. Materials Focus, 2012, 1, 127-130.	0.4	9
71	SILICA COATING OF FLUORESCENT NANOPARTICLES PROLONGS ENHANCEMENT OF SENTINEL LYMPH NODES. , 2012, , .		0

USE OF SILICA-COATED NANOPARTICLES AS A CONTRAST AGENT IN MICE. , 2012, , .

#	Article	IF	CITATIONS
73	Deposition of magnetite on AgI-silica core-shell particles by homogeneous precipitation method. , 2011, , .		0
74	Preparation of Activated-Carbon-Supported Iron Oxide by Homogeneous Precipitation Technique. Journal of Chemical Engineering of Japan, 2011, 44, 943-948.	0.6	1
75	Preparation of silica-coated AgI nanoparticles by an amine-free process and their X-ray imaging properties. Journal of the Ceramic Society of Japan, 2011, 119, 397-401.	1.1	11
76	Characterization of Multi-Walled Carbon Nanotube-Supported Pt Catalyst Prepared by Metal Nanocolloidal Solution for a Polymer Electrolyte Fuel Cell Catalyst. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2011, 62, 179-183.	0.2	8
77	Preferred test conditions for measuring flow rate distribution between cells in a polymer electrolyte fuel cell stack. Journal of Power Sources, 2011, 196, 8173-8179.	7.8	2
78	Rapid one-step synthesis, characterization and functionalization of silica coated gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 137-144.	4.7	45
79	X-ray imaging of newly-developed gadolinium compound/silica core–shell particles. Journal of Sol-Gel Science and Technology, 2011, 59, 650-657.	2.4	17
80	Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties. Journal of Colloid and Interface Science, 2011, 358, 329-333.	9.4	67
81	Low temperature fabrication of barium titanate hybrid films and their dielectric properties. Thin Solid Films, 2011, 519, 1971-1975.	1.8	8
82	Synthesis of Silica-Coated AgI Nanoparticles and Immobilization of Proteins on Them. Journal of Nanoscience and Nanotechnology, 2010, 10, 7758-7761.	0.9	14
83	Direct coating of quantum dots with silica shell. Journal of Sol-Gel Science and Technology, 2010, 55, 79-85.	2.4	28
84	A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells. Journal of Colloid and Interface Science, 2010, 351, 580-583.	9.4	15
85	Measuring method for flow rate distribution between cells in a polymer electrolyte fuel cell stack. Journal of Power Sources, 2010, 195, 5971-5974.	7.8	5
86	Preparation of catalyst for a polymer electrolyte fuel cell using a novel spherical carbon support. Journal of Power Sources, 2010, 195, 5862-5867.	7.8	22
87	Fabrication of barium titanate nanoparticlesâ€epoxy resin composite films and their dielectric properties. Polymer Composites, 2010, 31, 1179-1183.	4.6	18
88	Uniform Silica Coated Fluorescent Nanoparticles: Synthetic Method, Improved Light Stability and Application to Visualize Lymph Network Tracer. PLoS ONE, 2010, 5, e13167.	2.5	28
89	Direct Silica-Coating of Quantum Dots. Journal of Chemical Engineering of Japan, 2010, 43, 490-493.	0.6	13
90	Electrolyte-Added One-Pot Synthesis for Producing Monodisperse, Micrometer-Sized Silica Particles up to 7 1¼m. Langmuir, 2010, 26, 7512-7515.	3.5	49

#	Article	IF	CITATIONS
91	Fabrication of BaTiO3 Micropatterns by a Combination of Laser-Induced Pyrolysis Method and Nano-Crystalline Seeding Technique and Their Dielectric Properties. Journal of Chemical Engineering of Japan, 2010, 43, 132-139.	0.6	1
92	Synthesis of metallic copper nanoparticles coated with polypyrrole. Colloid and Polymer Science, 2009, 287, 877-880.	2.1	60
93	Silica coating of Co–Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone). Journal of Nanoparticle Research, 2009, 11, 1787-1794.	1.9	11
94	Fabrication of barium titanate nanoparticlesâ€polymethylmethacrylate composite films and their dielectric properties. Polymer Engineering and Science, 2009, 49, 1069-1075.	3.1	50
95	Dynamics of different-sized solid-state nanocrystals as tracers for a drug-delivery system in the interstitium of a human tumor xenograft. Breast Cancer Research, 2009, 11, R43.	5.0	25
96	Fabrication of Monodispersed, Multilayered Silica-Y:Eu-Silica Core-Shell Particles and Their Photonic Crystals. Journal of Chemical Engineering of Japan, 2009, 42, 47-50.	0.6	3
97	DEVELOPMENT OF BIO-IMAGING WITH FUNCTIONAL NANO-OBJECTS. , 2009, , .		0
98	Synthesis of spherical submicron-sized magnetite/silica nanocomposite particles. Journal of Sol-Gel Science and Technology, 2008, 45, 35-41.	2.4	35
99	In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer, 2008, 15, 145-152.	2.9	130
100	Preparation of composite particles with magnetic silica core and fluorescent polymer shell. Colloid and Polymer Science, 2008, 286, 959-964.	2.1	21
101	Single- and multi-layered patterns of polystyrene and silica particles assembled with a simple dip-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 722-729.	4.7	29
102	Synthesis of Highly Monodisperse Particles Composed of a Magnetic Core and Fluorescent Shell. Langmuir, 2008, 24, 9804-9808.	3.5	70
103	Preparation and Properties of Silica-Coated AgI Nanoparticles with a Modified Stober Method. Materials Research Society Symposia Proceedings, 2008, 1074, 1.	0.1	4
104	Direct Drawing of Submicrom Wiring By Laser-Induced Pyrolysis of Film Prepared from Liquid-Dispersed Metal Nanoparticles. Molecular Crystals and Liquid Crystals, 2007, 464, 161/[743]-167/[749].	0.9	9
105	Influence of Different Parameters on the Particle and Crystallite Sizes of Barium Titanate Prepared by an Alkoxide Sol-Gel Method. Journal of the Ceramic Society of Japan, 2007, 115, 661-666.	1.1	5
106	Direct Coating of Particles by a Liquid Phase Process. Current Nanoscience, 2007, 3, 222-240.	1.2	7
107	Effect of ultrasonic irradiation on carbon-supported Pt–Ru nanoparticles prepared at high metal concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 623-627.	4.7	30
108	Photoluminescence of CdSe and CdSe/CdO·nH2O core/shell nanoparticles prepared in aqueous solution. Optical Materials, 2007, 29, 1048-1054.	3.6	15

#	Article	IF	CITATIONS
109	Preparation of multilayered silica–Gd–silica core-shell particles and their magnetic resonance images. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308, 14-19.	4.7	34
110	Multiformity of particle arrays assembled with a simple dip-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 26-31.	4.7	22
111	Direct micropatterning of high dielectric BaTiO3 films by laser-induced pyrolysis with a nano-crystalline seeding technique. Applied Surface Science, 2007, 253, 5293-5301.	6.1	4
112	Sonochemical Preparation of Gold Nanoparticles: Comparison with the Thermal Reduction System. Journal of Chemical Engineering of Japan, 2007, 40, 847-853.	0.6	1
113	GENERATION OF NANOSIZED SILVER-IODIDE BEADS FOR MEDICAL APPLICATION. , 2006, , .		0
114	Preparation of Palladium Catalysts by Pretreatment Steps in Electroless Plating toward Partial Oxidation of Methanol with Steam Reforming. Journal of the Ceramic Society of Japan, 2006, 114, 654-656.	1.3	3
115	Synthesis of Pt–Ru nanoparticles with a bifunctional stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273, 97-100.	4.7	12
116	Preparation of highly monodisperse poly(methyl methacrylate) particles incorporating fluorescent rhodamine 6G for colloidal crystals. Journal of Colloid and Interface Science, 2006, 298, 232-237.	9.4	51
117	Preparation and characterization of long-lived anode catalyst for direct methanol fuel cells. Journal of Colloid and Interface Science, 2006, 300, 253-258.	9.4	19
118	Synthesis of Submicron-Sized Titania-Coated Silica Particles with a Sol-Gel Method and Their Application to Colloidal Photonic Crystals. Journal of Sol-Gel Science and Technology, 2006, 38, 91-95.	2.4	24
119	Preparation of silica-coated Co–Pt alloy nanoparticles. Materials Letters, 2006, 60, 2046-2049.	2.6	19
120	X-Ray Absorption of Gold Nanoparticles with Thin Silica Shell. Journal of Nanoscience and Nanotechnology, 2006, 6, 3503-3506.	0.9	17
121	Preparation of fluorescent polymer particles by emulsion polymerization. E-Polymers, 2005, 5, .	3.0	1
122	Silica coating of silver nanoparticles using a modified Stöber method. Journal of Colloid and Interface Science, 2005, 283, 392-396.	9.4	314
123	Preparation and colloidal stability of monodisperse magnetic polymer particles. Journal of Colloid and Interface Science, 2005, 289, 419-426.	9.4	47
124	Dielectric properties of lead zirconate titanate thin films seeded with barium strontium titanate nanoparticles. Thin Solid Films, 2005, 471, 71-75.	1.8	17
125	Preparation of silica encapsulated CdSe quantum dots in aqueous solution with the improved optical properties. Applied Surface Science, 2005, 242, 281-286.	6.1	46
126	Deposition of gold nanoparticles on silica spheres by electroless metal plating technique. Journal of Colloid and Interface Science, 2005, 283, 601-604.	9.4	52

#	Article	IF	CITATIONS
127	Synthesis of submicrometer-sized titania spherical particles with a sol–gel method and their application to colloidal photonic crystals. Journal of Colloid and Interface Science, 2005, 291, 162-168.	9.4	89
128	Preparation and characterization of aqueous colloids of Pt–Ru nanoparticles. Journal of Colloid and Interface Science, 2005, 292, 122-126.	9.4	45
129	Fabrication and dielectric properties of barium strontium titanate nano-particles/amorphous lead zirconate titanate composite thin film. Thin Solid Films, 2005, 485, 22-26.	1.8	9
130	Solvent Effects on Particle Formation in Hydrolysis of Tetraethyl Orthosilicate. Journal of Sol-Gel Science and Technology, 2005, 35, 197-201.	2.4	22
131	Low-Temperature Synthesis of Single-Phase Barium Strontium Titanate Thin Film with a nm-Seeding Technique and Its Dielectric Properties. Journal of Sol-Gel Science and Technology, 2005, 33, 315-321.	2.4	20
132	Electrorheological Response of Silicone Oil Suspension of Barium Strontium Titanate Particles with Different Surface Compositions. Nihon Reoroji Gakkaishi, 2005, 33, 285-287.	1.0	0
133	Direct Drawing of Ag Microwiring by Laser-Induced Pyrolysis of Film Prepared from Liquid-Dispersed Metal Nanoparticles. Japanese Journal of Applied Physics, 2005, 44, L740-L742.	1.5	31
134	Silica-coating of fluorescent polystyrene microspheres by a modified Stöber method and their stability against photobleaching. E-Polymers, 2005, 5, .	3.0	5
135	STRONG LUMINESCING CdSe NANOPARTICLES BY SURFACE MODIFICATION WITH CADMIUM (II) HYDROUS OXIDE. International Journal of Modern Physics B, 2005, 19, 2835-2840.	2.0	7
136	Fabrication of Sub-Micron Sized Titania Hollow Spheres. Journal of Chemical Engineering of Japan, 2004, 37, 912-914.	0.6	6
137	Synthesis of Silica Particles in the Hydrolysis of Tetraethyl Orthosilicate with Amine Catalysts. Journal of Chemical Engineering of Japan, 2004, 37, 905-907.	0.6	15
138	Fabrication of Mono- and Multi-Layers of Submicron-Sized Spheres by a Dip-Coating Technique and Their Transmittance Property. Journal of Chemical Engineering of Japan, 2004, 37, 614-621.	0.6	12
139	Size Effect on Crystal Structures of Barium Titanate Nanoparticles Prepared by a Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2004, 29, 49-55.	2.4	49
140	Preparation of lead zirconate titanate thin films with a combination of self-assembly and spin-coating techniques. Thin Solid Films, 2004, 457, 264-269.	1.8	5
141	Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core–shell particles. Journal of Colloid and Interface Science, 2004, 279, 281-283.	9.4	16
142	Particle formation in the hydrolysis of tetraethyl orthosilicate in pH buffer solution. Journal of Colloid and Interface Science, 2004, 279, 143-149.	9.4	49
143	Preparation of multilayered gold–silica–polystyrene core–shell particles by seeded polymerization. Journal of Colloid and Interface Science, 2004, 279, 284-287.	9.4	27
144	Silica-coating of fluorescent polystyrene microspheres by a seeded polymerization technique and their photo-bleaching property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 242, 47-52.	4.7	41

#	Article	IF	CITATIONS
145	Silica-coating of Agl semiconductor nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 251, 197-201.	4.7	36
146	Preparation of Micrometer-Sized Poly(methyl methacrylate) Particles with Amphoteric Initiator in Aqueous Media. Langmuir, 2004, 20, 7948-7951.	3.5	30
147	Structural Transformation of Template-Synthesized Mesoporous Silica with Addition of Chloroform. Journal of the Ceramic Society of Japan, 2004, 112, 347-349.	1.3	0
148	Micro-patterning of Lead Zirconate Titanate Thin Films Seeded with Barium Strontium Titanate Nano-crystalline Particles by Photo-irradiation. Journal of Chemical Engineering of Japan, 2004, 37, 609-613.	0.6	0
149	Preparation of Monodispersed Dielectric Fine Particles and Their Application. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2004, 12, 32-35.	0.0	Ο
150	Direct coating of gold nanoparticles with silica by a seeded polymerization technique. Journal of Colloid and Interface Science, 2003, 264, 385-390.	9.4	179
151	Preparation and Properties of Silica-Coated Cobalt Nanoparticlesâ€. Journal of Physical Chemistry B, 2003, 107, 7420-7425.	2.6	260
152	Low Temperature Processing of Crystalline Lead Zirconate Titanate (PZT) Film and the Direct Micropatterning by Laser-Induced Pyrolysis of a Sol-Gel-Derived Film. Japanese Journal of Applied Physics, 2003, 42, L843-L845.	1.5	14
153	Low-Temperature Synthesis and Dielectric Properties of Single-Phase Lead Zirconate Titanate Thin Film with a Nano Particle Seeding Technique. Materials Research Society Symposia Proceedings, 2003, 784, 3321.	0.1	1
154	Low-Temperature Synthesis of Single-Phase Lead Zirconate Titanate Thin Film with a nm-Seeding Technique Journal of the Ceramic Society of Japan, 2002, 110, 911-915.	1.3	19
155	Template-Synthesized Nanotubes for Chemical Separations and Analysis. Chemistry - A European Journal, 2002, 8, 3572.	3.3	60
156	Molecular Sieving and Sensing with Gold Nanotube Membranes. Chemical Record, 2002, 2, 259-267.	5.8	36
157	Solâ^'Gel Derived Gold Nanoclusters in Silica Glass Possessing Large Optical Nonlinearities. Journal of Physical Chemistry B, 2002, 106, 10157-10162.	2.6	73
158	Solâ^'Gel Processing of Silica-Coated Gold Nanoparticles. Langmuir, 2001, 17, 6375-6379.	3.5	138
159	Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating. Chemistry of Materials, 2001, 13, 1630-1633.	6.7	331
160	Photodegradation of SiO ₂ -Coated CdS Nanoparticles within Silica Gels. Journal of Nanoscience and Nanotechnology, 2001, 1, 95-99.	0.9	20
161	Preparation of Mesoporous Carbon from Organic Polymer/Silica Nanocomposite. Chemistry of Materials, 2000, 12, 3397-3401.	6.7	197
162	Highly Sensitive Methods for Electroanalytical Chemistry Based on Nanotubule Membranes. Analytical Chemistry, 1999, 71, 3665-3672.	6.5	69

#	Article	IF	CITATIONS
163	Preparation of a Î ³ -Alumina Film Doped with Fine Î ³ -Iron(III) Oxide Particles. Chemistry of Materials, 1997, 9, 1887-1892.	6.7	10
164	Toward a molecular Coulter® counter type device. Journal of Electroanalytical Chemistry, 1997, 431, 29-33.	3.8	22
165	Preparation of Aqueous Gold Colloid by Vapor Deposition Method. Journal of Colloid and Interface Science, 1997, 185, 285-286.	9.4	4
166	Chemistry of Ca(OH)2Leaching on Mineral Matter Removal from Coal. Energy & Fuels, 1996, 10, 386-391.	5.1	16
167	Photoluminescence of Fine Semiconductor (CdS, CdSe, Ge) Particle-Doped Films Prepared by a Mutual Counter Diffusion Method and a Sol-Gel Process. Journal of the Ceramic Society of Japan, 1993, 101, 69-72.	1.3	3
168	Improvement of Photo-Properties of Rhodamine 6G Doped Alumina Film by Addition of Dispersing Agents Hyomen Kagaku, 1991, 12, 339-341.	0.0	2
169	Preparation and Photoproperties of a Transparent Alumina Film Doped with Energy-Transfer-Type Laser Dye Pair. Journal of the American Ceramic Society, 1990, 73, 453-456.	3.8	24
170	Effects of Seeding with Nanocrystallites and Addition of Inorganic Alumina Sol on Crystallization of Alkoxide Alumina Gel. Key Engineering Materials, 0, 697, 12-17.	0.4	3
171	Synthesis of Metallic Zinc Nanoparticles by Reduction of Zinc Ions in Protonic Solvent. Journal of Metastable and Nanocrystalline Materials, 0, 33, 39-45.	0.1	0
172	Fabrication of metallic copper nanoparticles by utilizing a difference in standard electrode potential. Chemical Papers, 0, , 1.	2.2	1
173	Controlled oxidation of metallic copper nanoparticles by a silica coating. Inorganic and Nano-Metal Chemistry, 0, , 1-11.	1.6	3