
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6482046/publications.pdf

Version: 2024-02-01

FIENA DEÃ+AS

#	Article	IF	CITATIONS
1	Manufacture of healthy snack bars supplemented with moringa sprout powder. LWT - Food Science and Technology, 2022, 154, 112828.	5.2	2
2	Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chemistry, 2021, 338, 127972.	8.2	41
3	Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat Flour. Foods, 2021, 10, 139.	4.3	21
4	Pasta products enriched with moringa sprout powder as nutritive dense foods with bioactive potential. Food Chemistry, 2021, 360, 130032.	8.2	16
5	Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and Bioactivity of Resistant Peptides. Frontiers in Plant Science, 2021, 12, 754287.	3.6	17
6	Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa (Moringa oleifera L.). Foods, 2020, 9, 1639.	4.3	11
7	Changes in protein profile, bioactive potential and enzymatic activities of gluten-free flours obtained from hulled and dehulled oat varieties as affected by germination conditions. LWT - Food Science and Technology, 2020, 134, 109955.	5.2	17
8	Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran. Antioxidants, 2020, 9, 984.	5.1	25
9	Soluble Phenolic Composition Tailored by Germination Conditions Accompany Antioxidant and Anti-Inflammatory Properties of Wheat. Antioxidants, 2020, 9, 426.	5.1	25
10	Advances in Production, Properties and Applications of Sprouted Seeds. Foods, 2020, 9, 790.	4.3	18
11	Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods, 2020, 9, 296.	4.3	69
12	Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food and Chemical Toxicology, 2020, 137, 111178.	3.6	161
13	The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. Journal of Functional Foods, 2019, 55, 229-237.	3.4	31
14	Pilot-scale produced fermented lentil protects against t-BHP-triggered oxidative stress by activation of Nrf2 dependent on SAPK/JNK phosphorylation. Food Chemistry, 2019, 274, 750-759.	8.2	10
15	Development of a multifunctional yogurt-like product from germinated brown rice. LWT - Food Science and Technology, 2019, 99, 306-312.	5.2	46
16	Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains. Polish Journal of Food and Nutrition Sciences, 2018, 68, 289-297.	1.7	34
17	pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chemistry, 2018, 248, 262-271.	8.2	31
18	Vitamin C, Phenolic Compounds and Antioxidant Capacity of Broccoli Florets Grown under Different Nitrogen Treatments Combined with Selenium. Polish Journal of Food and Nutrition Sciences, 2018, 68, 179-186.	1.7	12

#	Article	IF	CITATIONS
19	Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chemistry, 2018, 257, 341-349.	8.2	29
20	Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science and Technology, 2018, 53, 516-524.	2.7	39
21	Potential Usefulness of a Wakame/Carob Functional Snack for the Treatment of Several Aspects of Metabolic Syndrome: From In Vitro to In Vivo Studies. Marine Drugs, 2018, 16, 512.	4.6	10
22	Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome. Journal of Functional Foods, 2018, 46, 185-194.	3.4	17
23	Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. Journal of Functional Foods, 2018, 48, 9-18.	3.4	17
24	Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation. Applied and Environmental Microbiology, 2017, 83, .	3.1	35
25	Health benefits of oat: current evidence and molecular mechanisms. Current Opinion in Food Science, 2017, 14, 26-31.	8.0	111
26	Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. Journal of Cereal Science, 2017, 73, 1-9.	3.7	53
27	Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chemistry, 2017, 221, 464-472.	8.2	114
28	Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 2017, 76, 236-244.	5.2	59
29	Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Science and Technology, 2017, 76, 245-252.	5.2	25
30	High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates. Journal of Agricultural and Food Chemistry, 2016, 64, 1730-1740.	5.2	52
31	Allergenic Proteins in Enology: A Review on Technological Applications and Safety Aspects. Molecules, 2015, 20, 13144-13164.	3.8	34
32	A Multistrategic Approach in the Development of Sourdough Bread Targeted Towards Blood Pressure Reduction. Plant Foods for Human Nutrition, 2015, 70, 97-103.	3.2	32
33	Molecular characterization of allergens in raw and processed kiwifruit. Pediatric Allergy and Immunology, 2015, 26, 139-144.	2.6	11
34	Evaluation of refrigerated storage in nitrogen-enriched atmospheres on the microbial quality, content of bioactive compounds and antioxidant activity of sauerkrauts. LWT - Food Science and Technology, 2015, 61, 463-470.	5.2	11
35	Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Research International, 2015, 70, 55-63.	6.2	70
36	Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal of Functional Foods, 2015, 18, 319-332.	3.4	72

#	Article	IF	CITATIONS
37	Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts. Plant Foods for Human Nutrition, 2015, 70, 401-407.	3.2	30
38	High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry, 2015, 171, 224-232.	8.2	140
39	Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 2015, 172, 343-352.	8.2	125
40	Synthesis of [77Se]-methylselenocysteine when preparing sauerkraut in the presence of [77Se]-selenite. Metabolic transformation of [77Se]-methylselenocysteine in Wistar rats determined by LC–IDA–ICP–MS. Analytical and Bioanalytical Chemistry, 2014, 406, 7949-7958.	3.7	6
41	Clinical monosensitivity to salmon and rainbow trout: a case report. Pediatric Allergy and Immunology, 2014, 25, 98-100.	2.6	5
42	Biochemical and Immunochemical Evidences Supporting the Inclusion of Quinoa (Chenopodium quinoa) Tj ETQqQ)	/Gyerlock 10
43	Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT - Food Science and Technology, 2014, 56, 328-334.	5.2	53
44	Immunochemical investigation of allergenic residues in experimental and commercially-available wines fined with egg white proteins. Food Chemistry, 2014, 159, 343-352.	8.2	10
45	Savinase, the Most Suitable Enzyme for Releasing Peptides from Lentil (<i>Lens culinaris</i> var.) Tj ETQq1 1 0.78 Chemistry, 2014, 62, 4166-4174.	34314 rgB 5.2	T /Overlock 81
46	Impact of storage under ambient conditions on the vitamin content of dehydrated vegetables. Food Science and Technology International, 2013, 19, 133-141.	2.2	2
47	Allergy to all mammalian Bovidae proteins but cow's milk in a child. Allergologia Et Immunopathologia, 2013, 41, 349-350.	1.7	2
48	Effect of storage on the content of indole-glucosinolate breakdown products and vitamin C of sauerkrauts treated by high hydrostatic pressure. LWT - Food Science and Technology, 2013, 53, 285-289.	5.2	18
49	Extruded Flaxseed Meal Enhances the Nutritional Quality of Cereal-based Products. Plant Foods for Human Nutrition, 2013, 68, 131-136.	3.2	29
50	Protein Quality of Traditional Rye Breads and Ginger Cakes as Affected by the Incorporation of Flour with Different Extraction Rates. Polish Journal of Food and Nutrition Sciences, 2013, 63, 5-10.	1.7	8
51	Characterization of the sensitization profile to lupin in peanutâ€allergic children and assessment of crossâ€reactivity risk. Pediatric Allergy and Immunology, 2013, 24, 270-275.	2.6	23
52	White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT - Food Science and Technology, 2012, 46, 77-83.	5.2	40
53	Influence of fermentation conditions of Brassica oleracea L. var. capitata on the volatile glucosinolate hydrolysis compounds of sauerkrauts. LWT - Food Science and Technology, 2012, 48, 16-23.	5.2	28
54	Children monosensitized to pine nuts have similar patterns of sensitization. Pediatric Allergy and Immunology, 2012, 23, 761-764.	2.6	6

#	Article	IF	CITATIONS
55	Electrochemical Determination of Ascorbigen in Sauerkrauts. Food Analytical Methods, 2012, 5, 487-494.	2.6	4
56	Se improves indole glucosinolate hydrolysis products content, Se-methylselenocysteine content, antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chemistry, 2012, 132, 907-914.	8.2	53
57	Bioactive Compounds, Myrosinase Activity, and Antioxidant Capacity of White Cabbages Grown in Different Locations of Spain. Journal of Agricultural and Food Chemistry, 2011, 59, 3772-3779.	5.2	35
58	Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT - Food Science and Technology, 2011, 44, 1303-1308.	5.2	53
59	High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chemistry, 2011, 125, 423-429.	8.2	87
60	Molecular characterisation of 36 oat varieties and inÂvitro assessment of their suitability for coeliacs' diet. Journal of Cereal Science, 2011, 54, 110-115.	3.7	33
61	Biochemical and Immunochemical Characterization of Different Varieties of Amaranth (Amaranthus L.) Tj ETQq1 59, 12969-12974.	1 0.784314 5.2	4 rgBT /Ov <mark>e</mark> r 44
62	Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds. Food Chemistry, 2010, 120, 710-716.	8.2	81
63	Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut. Food Chemistry, 2010, 123, 143-150.	8.2	58
64	Changes in Nutritional Value and Cytotoxicity of Garden Cress Germinated with Different Selenium Solutions. Journal of Agricultural and Food Chemistry, 2010, 58, 2331-2336.	5.2	17
65	Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control, 2010, 21, 82-88.	5.5	52
66	High hydrostatic pressure can improve the microbial quality of sauerkraut during storage. Food Control, 2010, 21, 524-528.	5.5	44
67	Chemical Evaluation and Sensory Quality of Sauerkrauts Obtained by Natural and Induced Fermentations at Different NaCl Levels from Brassica oleracea Var. <i>capitata</i> Cv. Bronco Grown in Eastern Spain. Effect of Storage. Journal of Agricultural and Food Chemistry, 2010, 58, 3549-3557.	5.2	44
68	Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and \hat{l}^2 -Carotene Content of Carrots. Journal of Agricultural and Food Chemistry, 2010, 58, 10539-10544.	5.2	75
69	2â€Furoylmethyl amino acids, hydroxymethylfurfural, carbohydrates and β arotene as quality markers of dehydrated carrots. Journal of the Science of Food and Agriculture, 2009, 89, 267-273.	3.5	23
70	Influence of Fermentation Conditions on Glucosinolates, Ascorbigen, and Ascorbic Acid Content in White Cabbage (<i>Brassica oleracea</i> var. <i>capitata</i> cv. Taler) Cultivated in Different Seasons. Journal of Food Science, 2009, 74, C62-7.	3.1	84
71	Changes in vitamin content of powder enteral formulas as a consequence of storage. Food Chemistry, 2009, 115, 1411-1416.	8.2	15
72	Efficacy of combinations of high pressure treatment, temperature and antimicrobial compounds to improve the microbiological quality of alfalfa seeds for sprout production. Food Control, 2009, 20, 31-39.	5.5	23

#	Article	IF	CITATIONS
73	Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. International Dairy Journal, 2008, 18, 918-922.	3.0	66
74	Application of high-pressure treatment on alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds to enhance the microbiological safety of their sprouts. Food Control, 2008, 19, 698-705.	5.5	61
75	Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. International Dairy Journal, 2006, 16, 831-839.	3.0	82
76	High pressure can reduce the antigenicity of bovine whey protein hydrolysates. International Dairy Journal, 2006, 16, 969-975.	3.0	56
77	Evaluation of the Residual Antigenicity of Dairy Whey Hydrolysates Obtained by Combination of Enzymatic Hydrolysis and High-Pressure Treatment. Journal of Food Protection, 2006, 69, 1707-1712.	1.7	26
78	Enzymatic proteolysis, under high pressure of soybean whey: Analysis of peptides and the allergen Gly m 1 in the hydrolysates. Food Chemistry, 2006, 99, 569-573.	8.2	80
79	Assessment of the residual immunoreactivity of soybean whey hydrolysates obtained by combined enzymatic proteolysis and high pressure. European Food Research and Technology, 2006, 222, 286-290.	3.3	21
80	Intestinal microbiota in rats fed with tofu (soy curd) treated under high pressure. European Food Research and Technology, 2005, 220, 395-400.	3.3	9
81	High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chemistry, 2004, 85, 641-648.	8.2	80
82	Role of buckwheat diet on rats as prebiotic and healthy food. Nutrition Research, 2003, 23, 803-814.	2.9	60